УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «13» июля 2021 г. № 1325

Лист № 1 Всего листов 7

Регистрационный № 82177-21

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЭСКК» для энергоснабжения Кемеровохиммаш – филиала АО «Алтайвагон»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЭСКК» для энергоснабжения Кемеровохиммаш — филиала АО «Алтайвагон» (далее по тексту — АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, отображения и передачи полученных результатов измерений коммерческому оператору оптового рынка, системному оператору и смежным субъектам ОРЭ.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную измерительную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень включает в себя измерительные трансформаторы тока (TT), измерительные трансформаторы напряжения (TH) (за исключением измерительного канала №5) и счетчики активной и реактивной электроэнергии, вторичные измерительные цепи.
- 2-й уровень информационно-вычислительный комплекс (ИВК) включает в себя сервер баз данных (СБД) с программным обеспечением (ПО) «АльфаЦЕНТР», обеспечивающий функции сбора и хранения результатов измерений, устройство синхронизации системного времени УССВ, каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации, автоматизированные рабочие места персонала (АРМ).

Основными функциями АИИС КУЭ являются:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- один раз в сутки и по запросу сбор привязанных к единому календарному времени измеренных данных о приращениях электроэнергии со счетчиков (ИИК), с заданной дискретностью учета (30 мин);
- хранение данных об измеренных величинах электроэнергии и журналов событий в базе данных сервера ИВК в течение 3,5 лет (для 30 минутных приращений энергии).
- разграничение доступа посредством паролей к базам данных для разных групп пользователей и фиксация в отдельном электронном файле всех действий пользователей с базами данных;
 - конфигурирование параметров и настроек;
- защита от несанкционированного доступа маркированием и пломбированием узлов системы;

- подготовку данных по результатам измерений в XML-формате для их передачи по электронной почте в AO «ATC», AO «CO EЭС» и смежным субъектам с использованием электронной подписи (ЭП);
- ведение журнала событий технических и программных средств (счетчики, линии связи, ПО «АльфаЦЕНТР») на сервере ИВК и счетчиках;
 - ведение системы единого времени.

Принцип действия:

На первом уровне АИИС КУЭ, для измерительных каналов с № 1 по № 4 первичные фазные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы низкого уровня, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. Для измерительного канала № 5 первичные фазные токи трансформируются измерительными трансформаторами тока в унифицированные аналоговые сигналы низкого уровня, а напряжения напрямую поступают на входы счетчика. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

На втором уровне АИИС КУЭ (ИВК), СБД, установленный в помещении «Серверная», с периодичностью один раз в 30-минут, осуществляет опрос счетчиков, считывая с них 30-минутный профиль мощности для каждого канала учета и журналы событий с помощью GSM сети. Считанные значения записываются в базу данных. Основной канал организован с помощью GPRS соединения. Резервный канал организован с помощью CSD соединения.

СБД производит вычисление получасовых значений электроэнергии на основании считанного профиля мощности с учетом коэффициентов трансформации ТТ и ТН, формирует и отправляет по выделенному каналу с протоколом TCP/IP сети Ethernet отчеты в виде XML-файлов в форматах в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояний средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (далее по тексту – COEB). В СОЕВ входят все средства измерений времени (встроенные часы счетчиков, сервера уровня ИВК, УССВ), влияющие на процесс измерения количества электроэнергии, и учитываются

временные характеристики (задержки) линий связи между ними, которые используются при синхронизации времени. СОЕВ привязана к единому календарному времени.

На уровне ИВК СОЕВ организована с помощью подключенного к серверу УССВ УСВ-3, которое имеет встроенный модуль синхронизации времени, работающий от сигналов точного времени ГЛОНАСС/GPS.

Коррекция часов сервера ИВК происходит при расхождении часов сервера ИВК и УСВ-3 более чем на ± 1 с (программируемый параметр).

Часы счетчиков ИК синхронизируются от часов ИВК с периодичностью не реже 1 раза в сутки, коррекция часов счетчиков ИК проводится при расхождении времени счетчика ИК и времени ИВК более чем на ± 2 с (программируемый параметр).

СОЕВ обеспечивает синхронизацию времени при проведении измерений количества электроэнергии с точностью не хуже \pm 5 с/сут.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих – кодом и (или) оттиском клейма поверителя.

Программное обеспечение

В АИИС КУЭ используется специализированное программное обеспечение ПО «АльфаЦЕНТР».

ПО «АльфаЦЕНТР» используется при коммерческом учете электрической энергии и обеспечивает обработку, организацию учета и хранения результатов измерения, а также их отображение, распечатку и передачу в форматах предусмотренных регламентом оптового рынка электроэнергии.

Идентификационные данные ПО «АльфаЦЕНТР» приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение				
Идентификационное наименование ПО	ac_metrology.dll				
Номер версии (идентификационный номер) ПО	не ниже 12.01				
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54				
Алгоритм вычисления цифрового идентификатора ПО	MD5				

Предел допускаемой дополнительной абсолютной погрешности, получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты каналов передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с разделом 4.5. Р 50.2.77-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

			Измерительные компоненты				Метрологические		
Номер ИК	Наименование объекта						Вид	характери	стики ИК
		TT	TH	Счетчик	УССВ	Сервер БД	электро-	Основная	Погрешность
							энергии	погрешность,	_
								%	условиях, %
1	ПС 110 кВ Заводская,	ТПЛ-10	НТМИ-10-66	МИР С-01		Активная	±1,2	±1,8	
	ЗРУ-10 кВ, III с.ш. 10 кВ,	400/5, KT 0,5	10000/100, KT 0,5	KT 0,2S/0,5		Реактивная	$\pm 1,2 \\ \pm 1,7$	±2,8	
	яч.63	Рег. № 1276-59	Рег. № 831-69	Рег. № 32142-08			Тсактивная	±1,7	12,6
2	ПС 110 кВ Заводская,	ТПЛ-10	НТМИ-10-66	МИР С-01		Активная	±1,2	±1,8	
	ЗРУ-10 кВ, IV с.ш. 10 кВ,	400/5, KT 0,5	10000/100, KT 0,5	KT 0,2S/0,5	2	2B-3 51644-12 160 Gen9	Реактивная	$\pm 1,7$	±2,8
	яч.66	Рег. № 1276-59	Рег. № 831-69	Рег. № 32142-08	1-1		Тсактивная	⊥1,7	12,6
3	ЦРП-10 кВ, І с.ш. 10 кВ, яч.13	ТПЛ-10-М	НТМИ-10-66	МИР С-01	64.	-3 64 0 C	Активная	±0,9	±1,2
		75/5, KT 0,2S	10000/100, KT 0,5	KT 0,2S/0,5		,16	Реактивная	$\pm 1,5$	$\pm 1,2 \\ \pm 2,0$
		Рег. № 22192-07	Рег. № 831-69	Рег. № 32142-08	S &	YCB-3 . № 516 DL160	Тсактивная	±1, <i>J</i>	12,0
4	ЦРП-10 кВ, II с.ш. 10 кВ, яч.18	ТПЛ-10-М	НТМИ-10-66	МИР С-01	per.	Активная	±0,9	±1,2	
		75/5, KT 0,2S	10000/100, KT 0,5	KT 0,2S/0,5	ф	p F	Реактивная	± 0.5 ± 1.5	$\pm 1,2 \\ \pm 2,0$
		Рег. № 22192-07	Рег. № 831-69	Рег. № 32142-08			Гсактивная	$\pm 1, \mathcal{S}$	±2,0
5	ВРУ-0,4 кВ ГБУЗ КО КОКНД	T-0,66		МИР С-01			Активная	±1,0	±1,6
		50/5, KT 0,5	-	KT 0,2S/0,5			Реактивная	$\pm 1,0$ $\pm 1,6$	±2,6
		Рег. № 22656-07		Рег. № 32142-08			т сактивная	±1,0	±∠,0

Примечания:

- 1 Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
- 2 В качестве характеристик погрешности ИК установлены пределы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95;
- 3 Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчика электроэнергии от 0 до плюс 40 °C;
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение метрологических характеристик;
 - 5 Допускается замена УССВ на аналогичное, утвержденного типа;
- 6 Допускается замена ПО на аналогичное, с версией не ниже указанной в описании типа средств измерений;
- 7 Допускается замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО);
 - 8 Допускается изменение наименования ИК без изменения объекта измерений.

Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение
1	2
Количество измерительных каналов	5
Нормальные условия:	
- напряжение, % от U _{ном}	от 98 до 102
- tok, $\%$ ot I_{hom}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
 коэффициент мощности соѕф 	0,87
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
- напряжение, % от Uном	от 90 до 110
- ток, % от Іном	от 5 до 120
- частота, Гц	от 49,6 до 50,4
 коэффициент мощности соѕф 	от 0,5 $_{\text{инд.}}$ до 0,8 $_{\text{емк.}}$
- температура окружающей среды для TT, °C	от -45 до +50
- температура окружающей среды для ТН, °С	от -45 до +40
- температура окружающей среды в месте расположения	
электросчетчиков, °С	от -40 до +55
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики (МИР С-01):	
- среднее время наработки на отказ, ч, не менее	140000
- среднее время восстановления работоспособности, ч	2
УССВ (УСВ-3):	
- среднее время наработки на отказ, ч, не менее	45000
- среднее время восстановления работоспособности, ч	2

Продолжение таблицы 3

1	2
Сервер БД:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, суток, не менее	45
- при отключении питания, лет, не менее	10
Сервер БД:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- резервирование электрического питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

Регистрация событий:

в журнале событий электросчетчиков:

параметрирования;

пропадания питания;

коррекции времени в электросчетчике с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство;

в журнале событий сервера ИВК:

изменение значений результатов измерений;

изменение коэффициентов измерительных трансформаторов тока и напряжения;

факт и величина синхронизации (коррекции) времени;

пропадание питания;

замена счетчика;

полученные с уровня ИИК «Журналы событий» счетчиков электроэнергии.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:

электросчетчиков;

промежуточных клеммников вторичных цепей напряжения;

испытательных коробок;

УСВ;

сервера БД;

- защита информации на программном уровне:

результатов измерений (при передаче, возможность использования электронной подписи);

установка пароля на электросчетчиках; установка пароля на сервер БД.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

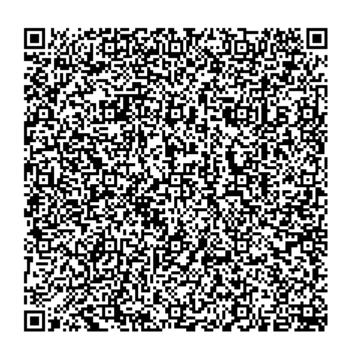
Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Тип	Количество, шт
Трансформатор напряжения	НТМИ-10-66	4
Трансформатор тока	ТПЛ-10	4
Трансформатор тока	ТПЛ-10-М	4
Трансформатор тока	T-0,66	3
Счетчик электрической энергии многофункциональный	МИР С-01	5
Устройство синхронизации времени	УСВ-3	1
Программное обеспечение	ПО «АльфаЦЕНТР»	1
Сервер БД	HP DL160 Gen9	1
Методика поверки	МП 14-054-2021	1
Паспорт-формуляр	1074205021219.АИИС.2021-001.ФО	1
Инструкция по эксплуатации КТС	1074205021219.АИИС.2021-001.ИЭ	1


Сведения о методиках (методах) измерений

приведены в документе «Методика измерений количества электрической энергии с использованием АИИС КУЭ ООО «ЭСКК» для энергоснабжения Кемеровохиммаш — филиала АО «Алтайвагон», аттестованном ФБУ «Кемеровский ЦСМ», уникальный номер записи об аккредитации в реестре аккредитованных лиц RA.RU.310473.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «ЭСКК» для энергоснабжения Кемеровохиммаш – филиала АО «Алтайвагон»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

