УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «29» апреля 2021 г. №623

Регистрационный № 81699-21

Лист № 1 Всего листов 8

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Архбум Тиссью Групп»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Архбум Тиссью Групп» (далее по тексту – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ решает следующие задачи:

- автоматические измерения 30-минутных приращений активной и реактивной электроэнергии, средне интервальной мощности;
- периодический (1 раз в полчаса, час, сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени состояния средств измерений и результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин.);
- автоматическое сохранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны сервера организаций участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и хранящихся в АИИС КУЭ данных от несанкционированного доступа на физическом и программном уровнях (установка пломб, паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- автоматическое ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (далее по тексту – ИИК), которые включают в себя измерительные трансформаторы тока (далее по тексту – ТТ) и напряжения (далее по тексту – ТН), счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.

2-й уровень — информационно-вычислительный комплекс (далее по тексту — ИВК) включает в себя технические средства приема-передачи данных (каналообразующую аппаратуру), коммуникационное оборудование, сервер баз данных (далее по тексту — БД) АИИС КУЭ, устройство синхронизации времени УСВ-3 (далее - УССВ), автоматизированные рабочие места (далее по тексту — АРМ) персонала, программное обеспечение (далее по тексту — ПО) ПК «Энергосфера» и технические средства обеспечения электропитания.

Измерительные каналы (далее по тексту – ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин;
- средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на сервер БД. На сервере БД осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации.

На верхнем — втором уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование, хранение поступающей информации и оформление отчетных документов.

Сервер БД ежесуточно формирует и отправляет с помощью электронной почты по каналу связи по сети Internet по протоколу TCP/IP отчеты с результатами измерений в формате XML на APM энергосбытовой организации - субъекта оптового рынка.

АРМ энергосбытовой организации - субъекта оптового рынка в автоматическом режиме с помощью электронной почты по каналу связи по сети Internet по протоколу TCP/IP отправляет отчеты с результатами измерений в формате XML с использованием электронной подписи (далее по тексту - ЭП) в АО «АТС». Сервер БД ежесуточно формирует и отправляет с помощью электронной почты по каналу связи по сети Internet по протоколу TCP/IP отчеты с результатами измерений в формате XML в филиал и АО «СО ЕЭС» РДУ и всем заинтересованным субъектам ОРЭМ.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровни ИИК и ИВК. АИИС КУЭ оснащена УССВ, на основе приемника сигналов точного времени от навигационных космических аппаратов систем ГЛОНАСС/GPS. УСВ обеспечивает автоматическую коррекцию часов сервера БД. Коррекция часов сервера БД проводится при расхождении часов сервера БД и времени УССВ более чем на ± 1 с. Коррекция часов счетчиков проводится при расхождении часов счетчика и сервера БД более чем на ± 2 с.

Журналы событий счетчиков электроэнергии отражают: время (дата, часы, минуты, секунды) коррекции часов.

Журналы событий сервера БД отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Нанесение знака поверки на средство измерений не предусмотрено.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера», в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту ПО и измерительной информации паролями в соответствии с правами доступа.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	ПК «Энергосфера»	
	Библиотека pso_metr.dll	
Номер версии (идентификационный номер) ПО	не ниже 1.1.1.1	
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B	
Алгоритм вычисления цифрового идентификатора ПО	MD5	

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав ИК АИИС КУЭ и их основные метрологические характеристики

· ·		Измерительные компоненты					Метрологические характеристики ИК	
Номер ИК	Наименование объекта	TT	ТН	Счётчик	УССВ	Вид электро- энергии	Основ- ная погреш- ность, %	Погреш- ность в рабочих усло-виях, %
1	2	3	4	5	6	7	8	9
1	ПС 220 кВ Созвездие, РУ-10 кВ, 1 сек.ш. 10 кВ, Яч.15	ТОЛ-СЭЩ-10 Кл. т. 0,5S Ктт 600/5 Рег. № 59870-15	НАМИ-10-95УХЛ2 Кл. т. 0,5 Ктн 10000/100 Рег. № 20186-05	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0 Рег. № 36697-17	УСВ-3 Рег. № 64242- 16	активная	±1,2 ±2,8	±4,0 ±6,9
2	ПС 220 кВ Созвездие, РУ-10 кВ, 2 сек.ш. 10 кВ, Яч.16	ТОЛ-СЭЩ-10 Кл. т. 0,5S Ктт 600/5 Рег. № 59870-15	НАМИ-10-95 Кл. т. 0,5 Ктн 10000/100 Рег. № 60002-15	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0 Рег. № 36697-17		активная	±1,2 ±2,8	±4,0 ±6,9

Продолжение таблицы 2.

1	2	3	4	5	6	7	8	9
Пределы допускаемой погрешности СОЕВ, с						±5		

Примечания:

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3 Погрешность в рабочих условиях указана $\cos \varphi = 0.8$ инд I=0.02·Iном и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1 2 от минус 40 до плюс 60 °C.
- 4 Кл. т. класс точности, Ктт коэффициент трансформации трансформаторов тока, Ктн коэффициент трансформации трансформаторов напряжения, Рег. № регистрационный номер в Федеральном информационном фонде.
- 5 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, УССВ на однотипный утвержденного типа, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
 - 6 Допускается замена сервера АИИС КУЭ без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО).
 - 7 Допускается изменение наименований ИК, без изменения объекта измерений.
- 8 Замена оформляется техническим актом в установленном на предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК АИИС КУЭ приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК АИИС КУЭ

Таблица 3 – Основные технические характеристики ИК АИИС КУЭ	
Наименование характеристики	Значение
Количество измерительных каналов	2
Нормальные условия:	
параметры сети:	
- напряжение, $\%$ от $U_{\text{ном}}$	от 99 до 101
- Tok, $\%$ ot I_{hom}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности соsф	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от $U_{\mbox{\tiny HOM}}$	от 90 до 110
- Tok, $\%$ ot I_{hom}	от 2 до 120
- коэффициент мощности	от $0,5$ инд до $0,8$ емк
- частота, Гц	от 47,5 до 52,5
- температура окружающей среды для ТТ и ТН, °С	от -60 до +40
- температура окружающей среды в месте расположения	
электросчетчиков, °С	от -40 до +60
- температура окружающей среды в месте расположения	
сервера,	от +10 до +30
- температура окружающей среды в месте расположения	
УССВ, °С	от -25 до +60
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее	
для электросчетчиков СЭТ-4ТМ.03М.01 (Рег. № 36697-17)	220 000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70 000
- среднее время восстановления работоспособности, ч	1
УССВ:	
- среднее время наработки на отказ, ч, не менее	45 000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сут., не менее	113
- при отключении питания, лет, не менее	40
Сервер:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал событий сервера ИВК:
 - параметрирования;
 - пропадание напряжения;
 - коррекция времени в счетчике и сервере ИВК;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему АИИС КУЭ ООО «Архбум Тиссью Групп» типографским способом.

Комплектность средства измерений

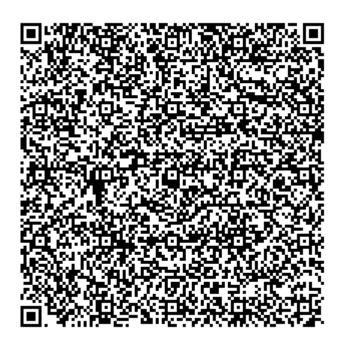
В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Тип/Обозначение	Количество, шт./Экз.
Трансформатор тока	ТОЛ-СЭЩ-10	6
Трансформатор напряжения	НАМИ-10-95УХЛ2	1
Трансформатор напряжения	НАМИ-10-95	1
Счетчик электроэнергии	CЭT-4TM.03M.01	2
Устройство синхронизации времени	УСВ-3	1
Программное обеспечение	ПК «Энергосфера»	1
Методика поверки	МП СМО-1812-2020	1
Паспорт-Формуляр	РЭСС.411711.АИИС.845 ПФ	1

Сведения о методиках (методах) измерений


приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Архбум Тиссью Групп», аттестованном ООО «МЦМО», аттестат об аккредитации № 01.00324-2011 от 14.09.2011 г.

Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

