УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «9» апреля 2021 г. №487

Регистрационный № 81502-21

Лист № 1 Всего листов 8

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности ООО «ОРИМИ»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности ООО «ОРИМИ» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электрической энергии и мощности, автоматизированного сбора, обработки, хранения и отображения полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ решает следующие задачи:

автоматическое измерение количества активной и реактивной электрической энергии с дискретностью 30 минут (30-минутные приращения электрической энергии) и нарастающим итогом на начало расчетного периода (далее – результаты измерений), используемое для формирования данных коммерческого учета;

формирование данных о состоянии средств измерений;

периодический (1 раз в 30 минут, сутки) и/или по запросу автоматический сбор привязанных к единому времени результатов измерений и данных о состоянии средств измерений;

хранение результатов измерений и данных о состоянии средств измерений в стандартной базе данных в течение не менее 3,5 лет;

разграничение доступа к базам данных для разных групп пользователей и фиксация в отдельном электронном файле всех действий пользователей с базами данных;

передача результатов измерений, данных о состоянии средств измерений в различных форматах организациям-участникам розничного рынков электрической энергии;

обеспечение по запросу дистанционного доступа к результатам измерений, данным о состоянии средств измерений на всех уровнях АИИС КУЭ;

обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка пломб, паролей и т.п.);

диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;

конфигурирование и настройку параметров АИИС КУЭ;

ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — информационно-измерительный комплекс (далее — ИИК), включающий в себя измерительные трансформаторы тока (далее — ТТ) по ГОСТ 7746-2015, измерительные трансформаторы напряжения (далее — ТН) по ГОСТ 1983-2015, счетчики активной и реактивной электрической энергии в режиме измерений активной электрической энергии по ГОСТ Р 52323-2005, ГОСТ 31819.22-2012, и в режиме измерений реактивной электрической энергии по ГОСТ Р 52425-2005, ГОСТ 31819.23-2012, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2 и 3.

2-й уровень — информационно-вычислительный комплекс (ИВК) включает в себя сервер баз данных ООО «ОРИМИ» (далее сервер БД), устройство синхронизации системного времени (УССВ-2), технические средства приема-передачи данных (каналообразующая аппаратура), программное обеспечение ПО «АльфаЦЕНТР».

На уровне ИИК первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы счетчиков электрической энергии.

Счетчики производят измерения действующих (среднеквадратических) значений напряжения (U) и тока (I) и рассчитывают полную мощность $S = U \cdot I$.

Измерения активной мощности (P) счетчиками выполняется путём перемножения мгновенных значений сигналов напряжения (u) и тока (i) и интегрирования полученных значений мгновенной мощности (p) по периоду основной частоты сигналов.

Реактивная мощность (Q) рассчитывается в счетчике по алгоритму $Q = (S^2 - P^2)^{0.5}$.

Средние значения активной и реактивной мощностей рассчитываются путем интегрирования текущих значений P и Q на 30-минутных интервалах времени.

Цифровой сигнал с выходов счетчиков по предусмотренным каналам связи поступает на входы сервера БД уровня ИВК. Сервер БД осуществляет сбор и обработку результатов измерений, в том числе расчет активной и реактивной электрической энергии и мощности с учетом коэффициентов трансформации, хранение полученной информации, отображение накопленной информации, оформление справочных и отчетных документов.

Передача результатов измерений и данных о состоянии средств измерений организациям-участникам розничного рынка электрической энергии производится по сети стандарта GSM 900/1800 с уровня ИИК.

Для обеспечение единого времени на средствах измерений, влияющих на процесс измерения количества электрической энергии и мощности (счетчики электрической энергии уровня ИИК, сервер БД уровня ИВК), предусмотрена система обеспечения единого времени (СОЕВ).

СОЕВ обеспечивает единое календарное время (день, месяц, год, час, минута, секунда), привязанное к национальной шкале координированного времени UTS(SU), на всех компонентах и уровнях системы.

Базовым устройством СОЕВ является устройство синхронизации времени типа УССВ-2, синхронизирующее собственную шкалу времени с национальной шкалой координированного времени UTS(SU) по сигналам глобальной навигационной спутниковой системы ГЛОНАСС.

Сервер БД не менее одного раза в час синхронизирует свою шкалу времени по сигналу, получаемому от УССВ-2, при превышении поправки часов сервера БД относительно шкалы времени УССВ-2 более чем на 1 секунду.

Сервер БД не реже одного раза в 30 минут опрашивает счетчики, если поправка часов счетчиков относительно шкалы времени сервера БД превышает 2 секунды, происходит коррекция часов счетчиков;

Журналы событий счетчиков электрической энергии и сервера БД отражают время (дата, часы, минуты) коррекции часов счетчиков и сервера БД в момент, непосредственно предшествующий корректировке.

Знак поверки в виде оттиска поверительного клейма наносится на свидетельство о поверке АИИС КУЭ.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню «Высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	amrserver.exe
	amrc.exe
	cdbora2.dll
	encryptdll.dll
	ac_metrology.dll
Номер версии (идентификационный номер) ПО	3.33.0.0 и выше
	3.33.2.0 и выше
	3.32.0.0 и выше
	2.0.0.0 и выше
	12.1.0.0
Цифровой идентификатор ac_metrology.dll	3e736b7f380863f44cc8e6f7bd211c54
Алгоритм вычисления цифрового идентификатора	MD5

Метрологические и технические характеристики

Таблица 2 – Состав измерительных каналов (ИК) АИИС КУЭ и метрологические характеристики

	Номер и наименование ИК	TT	ТН	Счетчик	УССВ/ Сервер	Вид элек- трической энергии	_	гические истики ИК Границы допускаемой относительной погрешности в рабо-
							погрешно-	чих усло- виях, %
1	2	3	4	5	6	7	8	9
1	Ввод 1 в ГРЩ-0,4 кВ (ТП-13369)	ТШП-0,66 600/5 0,5S ГОСТ 7746-2015 Рег. № 58385-14	-	Меркурий 230 ART2-03 PQRSIDN Іном (Імакс) = 5 (7,5) A Uном =3x230/400 В класс точности: по активной энергии - 0,5S по реактивной энергии - 1,0 ГОСТ Р 52323-2005 ГОСТ Р 52425-2005 Рег. № 23345-07	УССВ-2, Рег. № 54074-13,/ ІВМ совместимый компьютер с ПО «АльфаЦЕНТР»	Активная Реактивная	±1,7 ±2,7	±2,3 ±4,3
2	Ввод в РУ-6 кВ новой ТП панель № 2	ТОЛ-10-I 150/5 0,5S ГОСТ 7746-2015 Рег. № 15128-03	ЗНАМИТ-10(6)-1 УХЛ2 6000/100 0,2 ГОСТ 1983-2015 Рег. № 40740-09	Меркурий 230 ART2-00 PQRSIDN Іном (Імакс) = 5 (7,5) A Uном =3x57,7/100 В класс точности: по активной энергии - 0,5S по реактивной энергии - 1,0 ГОСТ Р 52323-2005 ГОСТ Р 52425-2005 Рег. № 23345-07	УССВ-2, Рег. IBM совместимый компьк	Активная Реактивная	±1,8 ±2,7	±2,3 ±4,3

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
3	ГРЩ-1 0,4 кВ, ввод 0,4 кВ от ТП-13408	T-0,66 У3 500/5 0,5S ГОСТ 7746-2015 Рег. № 71031-18	-	Меркурий 234 ART2-03P Іном (Імакс) = 5 (10) A	ССВ-2, Рег. № 54074-13/ совместимый компьютер с ПО «АльфаЦЕНТР»	Активная Реактивная	±1,7 ±2,7	±2,3 ±4,3
4	ГРЩ-2 0,4 кВ, ввод 0,4 кВ от ТП-13408	T-0,66 У3 400/5 0,5S ГОСТ 7746-2015 Рег. № 71031-18	-	Меркурий 234 ART2-03P Іном (Імакс) = 5 (10) A	УССВ-2, Рег. ІВМ совместим ПО «Альф	Активная Реактивная	±1,7 ±2,7	±2,3 ±4,3

Примечания:

- 1 В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электрической энергии на интервале времени 30 минут.
- 3 Погрешность в рабочих условиях эксплуатации указана для силы тока 5 % от $I_{\text{ном}} \cos \varphi = 0.8$ инд.
- 4 Допускается замена ТТ, ТН, УССВ, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение, указанных в таблице 2, метрологических характеристик. Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.
- 5 Пределы абсолютной погрешности часов всех компонентов системы относительно национальной шкалы координированного времени UTC (SU) ±5 с.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение		
Количество ИК	4		
Нормальные условия:			
параметры сети:			
напряжение, % от Ином	От 99 до 101		
ток, % от Іном	От 1 до 120		
коэффициент мощности	0,9 инд.		
частота, Гц	От 49,8 до 50,2		
температура окружающей среды, °С	От +20 до +25		
Условия эксплуатации:			
параметры сети:			
напряжение, % от Uном	От 95 до 105		
ток, % от Іном	От 1 до 120		
коэффициент мощности:			
cosφ	От 0,5 до 1,0		
sinφ	От 0,5 до 0,87		
частота, Гц	От 49,5 до 50,5		
температура окружающей среды для:			
ТТ, ТН, счетчиков, °С	От 0 до +35		
УССВ, сервера БД, °С	От +15 до +25		
Среднее время наработки на отказ, ч, не менее:			
счетчиков:			
- Меркурий 230	150000		
- Меркурий 234	220000		
трансформаторов тока	219000		
трансформаторов напряжения	219000		
УССВ	74500		
Глубина хранения информации:			
счетчики:			
тридцатиминутный профиль нагрузки в двух направлениях,			
сут, не менее	45		
сервер:			
хранение результатов измерений и информации состояний			
средств измерений, лет, не менее	3,5		

Надежность системных решений:

Защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

Регистрация в журналах событий компонентов системы времени и даты:

а) счетчиками электрической энергии:

попыток несанкционированного доступа;

связи со счетчиком, приведшей к каким-либо изменениям данных;

коррекции текущих значений времени и даты;

отсутствия напряжения при наличии тока в измерительных цепях;

перерывов питания;

самодиагностики (с записью результатов).

Защищённость применяемых компонентов:

а) механическая защита от несанкционированного доступа и пломбирование: счетчиков электрической энергии;

клемм вторичных обмоток трансформаторов тока, напряжения; промежуточных клеммников вторичных цепей тока и напряжения; испытательных клеммных коробок; сервера.

б) защита информации на программном уровне: установка паролей на счетчиках электрической энергии; установка пароля на сервер.

Знак утверждения типа

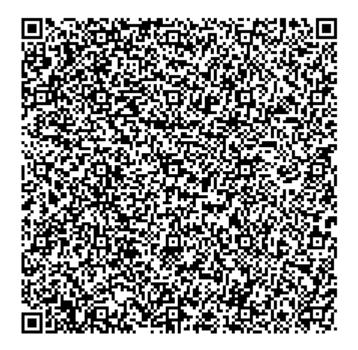
наносится на титульный лист эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество
Трансформаторы тока	ТШП-0,66	3 шт.
Трансформаторы тока	Т-0,66 УЗ	6 шт.
Трансформаторы тока	ТОЛ-10-І	3 шт.
Трансформатор напряжения	ЗНАМИТ-6(10)-1	1 шт.
Счетчики электрической энергии	Меркурий 234	2 шт.
статические трехфазные	Меркурий 230	2 шт.
Устройство синхронизации системного времени	УССВ-2	1 шт.
Сервер базы данных	ПЭВМ (IBM совместимый)	1 шт.
Программное обеспечение «АльфаЦЕНТР»	AC_PE_10	1 шт.
Паспорт-формуляр	58317473.411711.2007-01.ΠC	1 экз.

В комплект поставки входит также техническая документация на комплектующие средства измерений


Сведения о методиках (методах) измерений

приведены в документе 58317473.411711.2007-01.МИ «Методика измерений электрической энергии и мощности при помощи системы автоматизированной информационно-измерительной коммерческого учета электрической энергии мощности ООО «ОРИМИ». Свидетельство об аттестации №11-RA.RU.311468-2020 от 08.09.2020 г., выданное Обществу с ограниченной ответственностью «Оператор коммерческого учета», аттестат аккредитации № RA.RU.311468 от 21.06.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности ООО «ОРИМИ»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

