УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «9» апреля 2021 г. №497

Лист № 1 Всего листов 4

Регистрационный № 81438-21

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Контроллеры измерительные FloBoss модели S600+

Назначение средства измерений

Контроллеры измерительные FloBoss модели S600+ (далее – контроллеры) предназначены для измерений и преобразований электрических сигналов измерительных преобразователей температуры, расхода, давления, плотности в измеряемые величины, расчета по измеренным значениям расхода, массы и объема нефти в составе системы обработки информации системы измерений количества и показателей качества нефти.

Описание средства измерений

Принцип действия контроллера основан на измерении и преобразовании сигналов измерительных преобразователей и расходомеров в информацию об измеряемой среде с последующим вычислением и представлением информации на дисплее контроллера, подключенном принтере или на дисплее подключенного персонального компьютера (APM оператора).

Входные сигналы поступают в контроллер через каналы ввода/вывода (аналоговые, импульсные, частотные, дискретные или цифровые каналы передачи данных (НАRT, другие). По полученным сигналам контроллер, с помощью заложенного в нем програмного обеспечения, производит вычисления необходимых для учета и управления параметров.

Вычислительным центром контроллера являются один основной процессор и несколько вспомогательных процессоров для эффективной работы с 64-битными числами с плавающей точкой. Это обеспечивает требуюмую точность привыполнении математических операций, а целостность результирующих данных обеспечиается хранением нарастающих счетчиков в ячейках памяти с тройным резервированием (Tri-reg format).

На передней панели контроллера располагаются жидкокристаллический дисплей с подсветкой, 26-кнопочная клавиатура для локального управления контроллером и ввода данных, а также светодиод состояния контроллера. Жидкокристаллический дисплей и клавиатура обеспечивают возможность просмотра данных и конфигурационных параметров непосредственно на месте установки контроллера и могут быть настроены для работы с конкретным объектом.

Контроллер позволяет осуществлять:

- вычисление расхода по нескольким измерительным линиям;
- балансирование потоков по линиям и управление общей пропускной способностью узла учета;
 - управление пробоотборным устройством;
- управление поверочными операциями для этого контроллер оснащается специализированной платой прувера и поддерживает работу с поверочными установками;
 - управление дозированием и загрузкой продукта;
- архивирование измеренных и вычисленных параметров в архивных базах данных произвольного типа и периодически (настраивается при конфигурировании);
 - ведение журналов событий и аварий;

- сигнализацию при отказе преобразователей, при выходе параметров за установленные пределы и при сработке внутренних контуров самодиагностики;
 - печать данных на подключенный принтер;
- управление и обмен данными с подчиненными устройствами по цифровым каналам связи;
- передачу информации в системы более высокого уровня по имеющимся интерфейсам связи.

Контроллеры имеют интерфейсы связи RS232, RS422/RS485 и Ethernet для обмена данными с периферийным оборудованием и/или с системой более высокого уровня. Поддерживаются протоколы Modbus и TCP/IP.

Контроллеры содержат несколько типов памяти для хранения информации. Энергонезависимая память EPROM – для хранения операционной системы прибора, включая все функциональные блоки учета и управления, защищенные кодом CRC. Энергонезависимая Flash память – для резервного хранения конфигурации прибора. Энергонезависимая SRAM (с батарейной подпиткой) – для хранения текущей конфигурвции прибора и архивных данных. DRAM – для временного хранения информации.

Пломбировка контроллера осуществляется с помощью проволоки и свинцовой (пластмассовой) пломбы с нанесением знака поверки давлением на пломбу, установленной на контровочной проволоке, пропущенной через специальные отверстия, предусмотренные на корпусе контроллера.

Общий вид контроллера и схема пломбировки от несанкционированного доступа представлены на рисунке 1.

Рисунок 1 – Общий вид контроллера и схема пломбировки от несанкционированного доступа

Программное обеспечение

Таблица 1- Идентификационные данные програмного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	LinuxBinary.app
Номер версии (идентификационный номер) ПО	06.25/25
Цифровой идентификатор ПО	1990
Алгоритм вычисления цифрового идентификатора	CRC16

Уровень защиты ΠO от непреднамеренных изменений – «средний» в соответствии с P 50.2.077-2014 « $\Gamma C U$. Испытания средств измерений в целях утверждения типа. Проверка защиты программного обеспечения».

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений силы постоянного электрического тока, мА	от 4 до 20
Диапазон измерений частоты частотно-импульсного сигнала, Гц	от 1 до 10000
Пределы допускаемой погрешности измерений силы постоянного тока приведенной к диапазону измерений, %	±0,04
Пределы допускаемой абсолютной погрешности измерений частоты, Гц	$\pm 0,1$
Пределы допускаемой абсолютной погрешности измерений количества импульсов на каждые 10000 импульсов, имп.	±1
Пределы допускаемой относительной погрешности вычислений расхода, объема, массы,%	±0,01
Пределы допускаемой относительной погрешности вычислений коэффициентов преобразования и поправочных коэффициентов преобразователей расхода, %	±0,025

Таблица 3 – Технические характеристики

Наименование характеристики	Значение
Напряжение питания постоянного тока, В	от 20 до 32
Потребляемая мощность, Вт, не более	48
Габаритные размеры, мм. не более:	
– высота	305
– ширина	270
– длина	85
Масса, кг. не более	6
Условия эксплуатации:	
температура окружающего воздуха. °С	от +18 до +28
− относительная влажность при температуре +35 °C, %	от 30 до 80
– атмосферное давление. кПа	от 84 до 106
Наработка на отказ, не более, ч	20000
Средний срок службы, не менее, лет	10

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом в верхнем левом углу.

Комплектность средства измерений

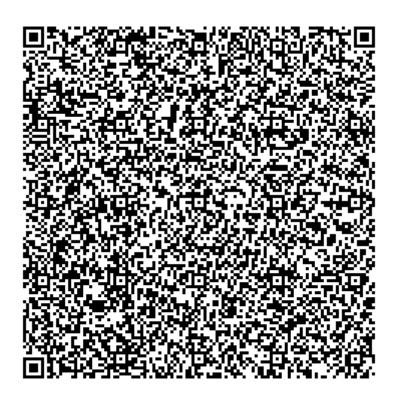
Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
1	2	3
Контроллер измерительный	FloBoss S600+	
	(зав. №№ 17974122, 18361865,	
	18361866, 18361870, 18361943,	
	18361946, 18361947, 18361948,	
	18361964, 18361965, 18361966,	25 ****
	18361967, 18361968, 20028123,	68, 20028123, 25 шт.
	20028124, 20028125, 20028224,	
	20028274, 20029747, 20029748,	
	18361952, 18361953, 18361954,	
	18361959, 18361960)	

Продолжение таблицы 4

Руководство по эксплуатации	-	1 экз.
Методика поверки	НА.ГНМЦ.0520-20 МП	1 экз.
Програмное обеспечение	Config 600	1 шт.

Сведения о методиках (методах) измерений


приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к контроллерам измерительным FloBoss модели S600+

Государственная поверочная схема для средств измерения силы постоянного электрического тока в диапазоне от $1\cdot 10^{-16}$ до 100A, утвержденная приказом Федерального агенства по техническому регулированию и метрологии от $01.10.2018 \, \mathbb{N} \, 2091$.

Государственная поверочная схема для средств измерений времени и частоты, утвержденная приказом Федерального агентства по техническому регулированию и метрологии от 31 июля 2018 г. N 1621.

Техническая документация фирмы «Emerson Process Management».

