УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «30» марта 2021 г. №428

Лист № 1 Всего листов 6

Регистрационный № 81422-21

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Газпром энерго» ООО «Газпром трансгаз Югорск» Ныдинское ЛПУ МГ КС «Ныдинская»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Газпром энерго» ООО «Газпром трансгаз Югорск» Ныдинское ЛПУ МГ КС «Ныдинская» (далее по тексту — АИИС КУЭ) предназначена для измерений приращений активной и реактивной электрической энергии, потребленной и переданной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИЙС КУЭ представляет собой многофункциональную, двухуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее — счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;

2-й уровень — информационно-вычислительный комплекс (ИВК) включает в себя сервер баз данных (СБД) типа Stratus FT Server 4700 P4700-2S, сервер синхронизации времени типа ССВ-1Г, автоматизированные рабочие места (АРМ) ООО «Газпром энерго» и АО «Газпром энергосбыт», каналообразующую аппаратуру.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0.02 с. активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин.;
- средняя на интервале времени 30 мин. активная (реактивная) электрическая мощность.

ИВК обеспечивает выполнение следующих функций:

- периодический (один раз в сутки) и по запросу автоматический сбор результатов измерений электрической энергии;
- автоматический сбор данных о состоянии средств измерений и состоянии объектов измерений;
 - хранение не менее 3.5 лет результатов измерений и журналов событий;

- автоматический сбор результатов измерений после восстановления работы каналов связи, восстановления питания;
- перемножение результатов измерений, хранящихся в базе данных, на коэффициенты трансформации TT и TH;
 - формирование отчетных документов;
- ведение журнала событий с фиксацией изменений результатов измерений, осуществляемых в ручном режиме, изменений коэффициентов ТТ и ТН, синхронизации (коррекции) времени с указанием времени до и после синхронизации (коррекции), пропадания питания, замены счетчика, событий, отраженных в журналах событий счетчиков;
 - конфигурирование и параметрирование технических средств ИВК;
 - сбор и хранение журналов событий счетчиков;
 - ведение журнала событий ИВК;
- синхронизацию времени в сервере БД с возможностью коррекции времени в счетчиках электроэнергии;
- аппаратную и программную защиту от несанкционированного изменения параметров и любого изменения данных;
 - самодиагностику с фиксацией результатов в журнале событий;
 - дистанционный доступ к компонентам АИИС.

ИВК осуществляет автоматизированный обмен (передачу и получение) результатами измерений и данными коммерческого учета электроэнергии с субъектами оптового рынка электрической энергии и мощности (ОРЭМ), с другими АИИС КУЭ утвержденного типа, а также с инфраструктурными организациями ОРЭМ, в том числе: АО «АТС», АО «СО ЕЭС».

Обмен результатами измерений и данными коммерческого учета электроэнергии между информационными системами субъектов оптового рынка и инфраструктурными организациями ОРЭМ, а также при передаче информации от сервера БД на АРМ, осуществляется по электронной почте в виде электронных документов ХМL в формате 80020, с возможностью заверения на АРМ электронно-цифровой подписью. Информация о средствах измерения, при необходимости, передается в виде электронного документа ХМL в формате 80030.

Информационные каналы связи в АИИС КУЭ построены следующим образом:

- посредством интерфейса RS-485, телефонной линии и модемов SHDSL для передачи данных от счетчиков до ИВК;
- посредством спутникового канала связи (основной канал) и телефонных каналов ТЧ связи, сети сотовой связи GSM каналов (резервные каналы) для передачи данных от уровня ИИК до уровня ИВК;
 - посредством локальной вычислительной сети интерфейса Ethernet;
- посредством наземного канала связи E1 для передачи данных от уровня ИВК во внешние системы (основной канал);
- посредством спутникового канала для передачи данных от уровня ИВК во внешние системы (резервный канал).
- посредством электронной почты в виде электронных документов XML в форматах 80020, 80030 для возможности передачи данных от сервера БД на APM и во внешние системы.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ предусматривают поддержание шкалы всемирного координированного времени на всех уровнях АИИС КУЭ (ИИК, ИВК). В состав СОЕВ входит сервер синхронизации времени типа ССВ-1Г (далее по тексту - УСВ), ежесекундно синхронизирующий собственную шкалу времени со шкалой всемирного координированного времени UTC (SU) по сигналам навигационной системы ГЛОНАСС.

ИВК АИИС КУЭ периодически с установленным интервалом проверки текущего времени, сравнивает собственную шкалу времени со шкалой времени УСВ и при расхождении ± 1 с и более, ИВК АИИС КУЭ производит синхронизацию собственной шкалы времени со шкалой времени УСВ.

Сравнение шкалы времени счетчиков электроэнергии происходит по заданному расписанию, но не реже одного раза в сутки. При расхождении шкалы времени счетчиков электроэнергии со шкалой времени ИВК на величину более чем ± 1 с, выполняется синхронизация шкалы времени счетчика.

Журналы событий счетчика и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР», в которое входит модуль синхронизации времени "АС Time" с устройствами ГЛОНАСС.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню - «высокий» в соответствии с ГОСТ Р 8.883-2015. Идентификационные признаки ПО приведены в таблице 1.

Таблица 1 - Идентификационные признаки метрологически значимой части ПО

Идентификационные признаки	Значение	
Идентификационное наименование ПО	ac_metrology.dll	
Номер версии (идентификационный номер) ПО	не ниже 12.1	
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54	
Алгоритм вычисления цифрового идентификатора ПО	MD5	

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ приведен в таблице 2.

Таблица 2 — Состав измерительных каналов АИИС КУЭ

Tuosinga 2 Coetab iismopritoribiisia kanasiob i titto 100 C					
Номер ИК	Наименование ИК	TT	ТН	Счетчик	ИВК
	ПС 110/10 кВ "Ныда",	ТПЛ-10У3	НАМИ-10-95УХЛ2	A1802RALQ-	
1	3РУ-10 кВ	400/5	10000/100	P4GB-DW-4	2S
	"Технологическое",	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	
	1СШ, яч.11 Ввод №1	Рег. № 1276-59	Рег. № 20186-05	Рег. № 31857-06	№ 58301-14, 4700 P4700-2S
2	ПС 110/10 кВ	ТПЛ-10У3	НТМИ-10-66У3	A1805RL-P4GB-	per. № 58301-14, erver 4700 P4700-
	"Ныда", ЗРУ-10 кВ	300/5	10000/100	DW-4	33C 0 P
	"Технологическое",	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,5S/1,0	2 58 700
	1СШ, яч.33	Рег. № 1276-59	Рег. № 831-69	Рег. № 31857-06	. N <u>s</u>
	ПС 110/10 кВ	ТПЛ-10У3	НАМИ-10-95УХЛ2	A1802RALQ-	per. ♪
3	"Ныда", ЗРУ-10 кВ	400/5	10000/100	P4GB-DW-4	, p Se
3	"Технологическое",	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,2S/0,5	3-11 FT
	2СШ, яч.10 Ввод №2	Рег. № 1276-59	Рег. № 20186-05	Рег. № 31857-06	CCB-11
	ПС 110/10 кВ	ТПЛ-10У3	НТМИ-10-66У3	A1805RL-P4GB-	CCE
4	"Ныда", ЗРУ-10 кВ	300/5	10000/100	DW-4	Stı
	"Технологическое",	Кл. т. 0,5	Кл. т. 0,5	Кл. т. 0,5Ѕ/1,0	
	2СШ, яч.28	Рег. № 1276-59	Рег. № 831-69	Рег. № 31857-06	

Примечания:

- 1. Допускается замена ТТ, ТН, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 3 метрологических характеристик.
- 2. Допускается замена УСВ на аналогичное, утвержденного типа.
- 3. Допускается замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО).

Продолжение таблицы 2

4. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ, как их неотъемлемая часть.

Таблица 3 – Основные метрологические характеристики АИИС КУЭ

Номера ИК	Вид электроэнергии	Границы основной погрешности (±δ), %	Границы погрешности в рабочих условиях (±δ), %
1, 3	Активная	1,2	2,9
1, 3	Реактивная	1,9	4,7
2, 4	Активная	1,3	3,3
2, 4	Реактивная	2,1	5,7
Пределы абсолютной погрешности синхронизации компонентов			
СОЕВ АИИС КУЭ к шкале координированного времени UTC (SU),			5
(\pm) c			

Примечания:

- 1 Характеристики погрешности ИК даны для измерений электроэнергии (получасовая).
- 2~B качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0.95.
- 3 Границы погрешности результатов измерений приведены для $\cos \varphi = 0.8$, токе TT, равном 100~% от $I_{\text{ном}}$ для нормальных условий, для рабочих условий при $\cos \varphi = 0.8$, токе TT, равном 5~% от $I_{\text{ном}}$, при температуре окружающего воздуха в месте расположения счетчиков от 0~до $+40^{\circ}\text{C}$.

Таблица 4 – Основные технические характеристики ИК

Наименование характеристики	Значение
1	2
Количество ИК	4
Нормальные условия:	
параметры сети:	
- напряжение, % от Uном	от 90 до 110
- ток, % от Іном	от 100 до 120
- коэффициент мощности	0,9
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от Ином	от 90 до 110
- ток, % от Іном	от 5 до 120
- коэффициент мощности:	
cosφ	от 0,5 до 1,0
sinφ	от 0,5 до 0,87
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +40
- температура окружающей среды для счетчиков, °С	
Альфа А1800	от -40 до +65
- температура окружающей среды для сервера ИВК, °С	от +15 до +25

Продолжение таблицы 4

1	2
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчик Альфа А1800:	
- среднее время наработки на отказ, ч, не менее	120000
- среднее время восстановления работоспособности, ч	2
CCB-1Γ:	
- среднее время наработки на отказ, ч, не менее	22000
- среднее время восстановления работоспособности, ч	2
Сервер ИВК:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
Счетчик Альфа А1800:	
- тридцатиминутный профиль нагрузки в двух направлениях, сут, не	
менее	180
- при отключении питания, лет, не менее	30
Сервер ИВК:	
- хранение результатов измерений и информации состояний средств	
измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
 - резервный сервер с установленным специализированным ПО;
- резервирование каналов связи между уровнями ИИК и ИВК и между ИВК и внешними системами субъектов ОРЭМ, а также с инфраструктурными организациями ОРЭМ.

Ведение журналов событий:

- счётчика, с фиксированием событий:
- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике.

ИВК, с фиксированием событий:

- даты начала регистрации измерений;
- перерывы электропитания;
- программные и аппаратные перезапуски;
- установка и корректировка времени;
- переход на летнее/зимнее время;
- нарушение защиты ИВК;
- отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита информации на программном уровне:
 - результатов измерений при передаче информации (возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на ИВК.

Знак утверждения типа

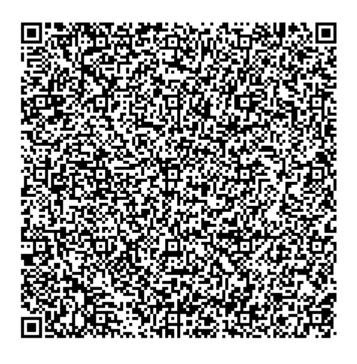
наносится на титульные листы эксплуатационной документации на АИИС КУЭ.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 — Комплектность АИИС КУЭ

Наименование	Обозначение	Количество,	
Паименование	Ооозначение	шт.	
Трансформаторы тока проходные с литой изоляцией	ТПЛ-10У3	8	
Тромоформотор монграмомия	НТМИ-10-66У3	2	
Трансформатор напряжения	НАМИ-10-95УХЛ2	2	
Счетчики электрической энергии трехфазные	Альфа А1800	4	
многофункциональные	Альфа А1800		
Сервер синхронизации времени	ССВ-1Г	1	
Connon MDV	Stratus FT Server 4700	1	
Сервер ИВК	P4700-2S	1	
Документация			
Методика поверки	МП 26.51/54/20	1	
Паспорт-формуляр	87570424.425210.089.ФО	1	


Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Газпром энерго» ООО «Газпром трансгаз Югорск» Ныдинское ЛПУ МГ КС «Ныдинская», аттестованном ООО «Альфа-Энерго», аттестат аккредитации № RA.RU.311785 от 15.08.2016 г.

Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

