Приложение № 30 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2343

Лист № 1 Всего листов 12

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО ХК «СДС-Энерго» ПС 35 кВ Весенняя

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО ХК «СДС-Энерго» ПС 35 кВ Весенняя (далее по тексту – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, отображения и передачи полученных результатов измерений коммерческому оператору оптового рынка, системному оператору и смежным субъектам ОРЭ.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную измерительную систему с централизованным управлением и распределённой функцией измерения.

Измерительные каналы (ИК) состоят из трех уровней АИИС КУЭ:

- 1-й уровень включает в себя измерительные трансформаторы тока (TT), измерительные трансформаторы напряжения (TH) и счетчики активной и реактивной электроэнергии, вторичные измерительные цепи.
- 2-й уровень измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД), технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, коммутационное оборудование.
- 3-й уровень информационно-вычислительный комплекс (ИВК), включающий в себя сервер баз данных (СБД) с программным обеспечением (ПО) «АльфаЦЕНТР», обеспечивающий функции сбора и хранения результатов измерений, устройство синхронизации системного времени (УССВ), технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации, технические средства приема-передачи данных.

Основными функциями АИИС КУЭ являются:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- один раз в сутки и по запросу сбор привязанных к единому календарному времени измеренных данных о приращениях электроэнергии со счетчиков (ИИК), с заданной дискретностью учета (30 мин);
- хранение данных об измеренных величинах электроэнергии и журналов событий в базе данных сервера ИВК в течение 3,5 лет (для 30 минутных приращений энергии).

- разграничение доступа посредством паролей к базам данных для разных групп пользователей и фиксация в отдельном электронном файле всех действий пользователей с базами данных;
 - конфигурирование параметров и настроек;
- защита от несанкционированного доступа маркированием и пломбированием узлов системы;
- подготовку данных по результатам измерений в XML-формате для их передачи по электронной почте в AO «ATC», AO «CO EЭС» и смежным субъектам с использованием электронной подписи (ЭП);
- ведение журнала событий технических и программных средств (счетчики, линии связи, ПО «АльфаЦЕНТР») на сервере ИВК и счетчиках;
 - ведение системы единого времени.

Принцип действия:

На первом уровне АИИС КУЭ первичные фазные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Счетчики автоматически записывают в память измеренные величины активной и реактивной энергии, с интервалом усреднения 30 минут, на глубину 113,7 суток. В памяти счетчика хранятся два четырехканальных (актив/реактив, прием/отдача) независимых массива профиля мощности.

На втором уровне АИИС КУЭ (ИВКЭ) выполняется: автоматический сбор измерительной информации со счетчиков с помощью проводной линии связи RS-485; хранение результатов измерений не менее 45 суток (для 30-минутных интервалов); автоматическая диагностика состояния средств измерений и оборудования АИИС КУЭ (счетчиков, линий связи, СОЕВ) и хранение в журнале событий в энергонезависимой памяти; контроль достоверности результатов измерений; установку точного времени счётчиков (отклонение СОЕВ не более 5 с/сут). Передача накопленных данных из УСПД на сервер базы данных уровня ИВК.

На третьем уровне АИИС КУЭ (ИВК) выполняется автоматический сбор измерительной информации с УСПД с помощью GSM/GPRS канала; вычисление величин потребления электроэнергии с учетом коэффициентов трансформации ТТ и ТН с использованием программного обеспечения «АльфаЦЕНТР»; установку точного времени с помощью устройства синхронизации системного времени (отклонение СОЕВ не более 5 с/сут); резервное копирование, формирование и хранение поступающей информации не менее 3,5 лет (для 30-минутных интервалов); автоматическая диагностика состояния средств измерений и оборудования АИИС КУЭ и хранение в журнале событий на сервере ИВК; контроль достоверности результатов измерений; сервер базы данных формирует и отправляет отчет в ХМL-формате по выделенному каналу с протоколом TCP/IP сети Епternet в АО «АТС», АО «СО ЕЭС», и другим заинтересованным организациям; заверяется подготовленный отчет в ХМL-формате (макет 80020) ЭП и отправляет его в АО «АТС» по электронной почте.

АИИС КУЭ имеет систему обеспечения единого времени (далее по тексту – COEB). В СОЕВ входят все средства измерений времени (встроенные часы счетчиков, сервера уровня ИВК, УССВ), влияющие на процесс измерения количества электроэнергии, и учитываются временные характеристики (задержки) линий связи между ними, которые используются при синхронизации времени. СОЕВ привязана к единому календарному времени.

На уровне ИВК СОЕВ организована с помощью подключенного к серверу УССВ УСВ-3, которое имеет встроенный модуль синхронизации времени, работающей от сигналов точного времени ГЛОНАСС/GPS.

Коррекция часов сервера ИВК происходит при расхождении часов сервера ИВК и УСВ-3 более чем на ± 2 с (программируемый параметр).

Часы счетчиков ИК синхронизируются от часов ИВК с периодичностью не реже 1 раза в сутки, коррекция часов счетчиков ИК проводится при расхождении времени счетчика ИК и времени ИВК более чем на ± 2 с (программируемый параметр).

СОЕВ обеспечивает синхронизацию времени при проведении измерений количества электроэнергии с точностью не хуже \pm 5 с/сут.

Программное обеспечение

В АИИС КУЭ используется специализированное программное обеспечение ПО «АльфаЦЕНТР».

ПО «АльфаЦЕНТР» используется при коммерческом учете электрической энергии и обеспечивает обработку, организацию учета и хранения результатов измерения, а также их отображение, распечатку и передачу в форматах предусмотренных регламентом оптового рынка электроэнергии.

Идентификационные данные ПО «АльфаЦЕНТР» приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение					
Идентификационное наименование ПО	ac_metrology.dll					
Номер версии (идентификационный номер) ПО	не ниже 12.1					
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54					
Алгоритм вычисления цифрового идентификатора ПО	MD5					

Предел допускаемой дополнительной абсолютной погрешности, получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты каналов передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с разделом 4.5. Р 50.2.77-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

,	2 Состав измер	Измерительные компоненты							Метроло	гические
Номер	Наименование							Вид		істики ИК
ИК	объекта	TT	TH	Счетчик	УСПД	COEB	Сервер	электро-	Основная	Погрешность
								энергии	погрешность, %	в рабочих условиях, %
1	2	3	4	5	6	7	8	9	10	11
1	ПС 35 кВ Весенняя, КРУ 35		НАЛИ-СЭЩ 35000/100	CЭT-4TM.03M.01 KT 0,5S/1,0				Активная	±1,6	±2,1
1	кВ, 1СШ 35 кВ, Ввод Т1, яч. 2	КТ 0,5S Рег. № 51623-12	КТ 0,5 Рег. № 51621-12	Per. № 36697-17			v3	Реактивная	±2,9	±3,2
2	ПС 35 кВ Весенняя, КРУ 35		НАЛИ-СЭЩ 35000/100	CЭT-4TM.03M.01 KT 0,5S/1,0	-09	-12	-2609v3	Активная	±1,6	±2,1
2	кВ, 1СШ 35 кВ, Ввод 1, яч. 3	КТ 0,5S Рег. № 51623-12	KT 0,5 Per. № 51621-12	Per. № 36697-17		CB-3 51644	:n9 E5	Реактивная	±2,9	±3,2
3	ПС 35 кВ Весенняя, КРУ 35		НАЛИ-СЭЩ 35000/100	CЭT-4TM.03M.01 KT 0,5S/1,0	RTU-327I Per.N <u>º</u> 41907	N &	DL160 Gen9 E5	Активная	±1,6	±2,1
3	кВ, 2СШ 35 кВ, Ввод 2, яч. 6	KT 0,5S Per. № 51623-12	KT 0,5 Per. № 51621-12	Per. № 36697-17	Pe	Per	P DL 1	Реактивная	±2,9	±3,2
4	ПС 35 кВ Весенняя, КРУ 35		НАЛИ-СЭЩ 35000/100	CЭT-4TM.03M.01 KT 0,5S/1,0			HP	Активная	±1,6	±2,1
T	кВ, 2СШ 35 кВ, Ввод Т2, яч. 7	KT 0,5S Per. № 51623-12	КТ 0,5 Рег. № 51621-12	Per. № 36697-17				Реактивная	±2,9	±3,2

продолж	кение таблицы 2		T							
1	2	3	4	5	6	7	8	9	10	11
5	ПС 35 кВ Весенняя, КРУ 6 кВ, 1СШ 6 кВ, яч. 19	,	НАЛИ-СЭЩ 6000/100 КТ 0,5 Рег. № 51621-12	CЭT-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17				Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2
6	ПС 35 кВ Весенняя, КРУ 6 кВ, 1СШ 6 кВ, яч. 17		НАЛИ-СЭЩ 6000/100 КТ 0,5 Per. № 51621-12	CЭT-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17				Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2
7	ПС 35 кВ Весенняя, КРУ 6 кВ, 1СШ 6 кВ, яч. 15	,	НАЛИ-СЭЩ 6000/100 КТ 0,5 Рег. № 51621-12	CЭT-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17	6(12	-2609v3	Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2
8	ПС 35 кВ Весенняя, КРУ 6 кВ, 1СШ 6 кВ, яч. 13		НАЛИ-СЭЩ 6000/100 КТ 0,5 Per. № 51621-12	CЭT-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17	RTU-327L Per.Nº41907-09	yCB-3 ∴ № 51644-12	DL160 Gen9 E5-2609v3	Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2
9	ПС 35 кВ Весенняя, КРУ 6 кВ, 1СШ 6 кВ, яч. 9	ТОЛ-СЭЩ 200/5 KT 0,5S Per. № 51623-12	НАЛИ-СЭЩ 6000/100 КТ 0,5 Per. № 51621-12	CЭT-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17	Pe	Per.	HP DL10	Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2
10	ПС 35 кВ Весенняя, КРУ 6 кВ, 1СШ 6 кВ, яч. 7	*	НАЛИ-СЭЩ 6000/100 КТ 0,5 Рег. № 51621-12	CЭT-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17				Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2
11	ПС 35 кВ Весенняя, КРУ 6 кВ, 1СШ 6 кВ, Ввод Т1, яч. 5	ТОЛ-СЭЩ 2500/5 KT 0,5S Per. № 51624-12	НАЛИ-СЭЩ 6000/100 КТ 0,5 Рег. № 51621-12	СЭТ-4ТМ.03М.01 КТ 0,5S/1,0 Рег. № 36697-17				Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2

Лист № 6

Всего листов 12

1	2	3	4	5	6	7	8	9	10	11
12	ПС 35 кВ Весенняя, КРУ 6 кВ, 2СШ 6 кВ, яч. 6		НАЛИ-СЭЩ 6000/100 КТ 0,5 Рег. № 51621-12	CЭТ-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17				Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2
13	ПС 35 кВ Весенняя, КРУ 6 кВ, 2СШ 6 кВ, яч.8	ТОЛ-СЭЩ 400/5 KT 0,5S Per. № 51623-12	НАЛИ-СЭЩ 6000/100 КТ 0,5 Рег. № 51621-12	CЭT-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17		12	5-2609v3	Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2
14	ПС 35 кВ Весенняя, КРУ 6 кВ, 2СШ 6 кВ, яч.10	ТОЛ-СЭЩ 300/5 KT 0,5S Per. № 51623-12	НАЛИ-СЭЩ 6000/100 КТ 0,5 Рег. № 51621-12	CЭT-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17	327L 1907-09	YCB-3 ∴ № 51644-12	DL160 Gen9 E5	Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2
15	ПС 35 кВ Весенняя, КРУ 6 кВ, 2СШ 6 кВ, яч.12	ТОЛ-СЭЩ 300/5 KT 0,5S Per. № 51623-12	НАЛИ-СЭЩ 6000/100 КТ 0,5 Рег. № 51621-12	CЭT-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17	RTU-327L Per.N <u>°</u> 41907-09	Per.	HP DL1	Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2
16	ПС 35 кВ Весенняя, КРУ 6 кВ, 2СШ 6 кВ, яч.16	ТОЛ-СЭЩ 300/5 KT 0,5S Per. № 51623-12	НАЛИ-СЭЩ 6000/100 КТ 0,5 Рег. № 51621-12	CЭT-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-17				Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2
17	ПС 35 кВ Весенняя, КРУ 6 кВ, 2СШ 6 кВ, яч.18	ТОЛ-СЭЩ 200/5 КТ 0,5S Рег. № 51623-12	НАЛИ-СЭЩ 6000/100 КТ 0,5 Рег. № 51621-12	СЭТ-4ТМ.03М.01 КТ 0,5S/1,0 Рег. № 36697-17				Активная Реактивная	±1,6 ±2,9	±2,1 ±3,2

Продоли	спис таолицы 2		T							
1	2	3	4	5	6	7	8	9	10	11
18	ПС 35 кВ Весенняя, КРУ 6	ТОЛ-СЭЩ 2500/5	НАЛИ-СЭЩ 6000/100	CЭT-4TM.03M.01 KT 0,5S/1,0			v3	Активная	±1,6	±2,1
	кВ, 2СШ 6 кВ, Ввод Т2, яч. 20	KT 0,5S Per. № 51624-12	КТ 0,5 Рег. № 51621-12	Der No 26607 17	6	.12	.2609	Реактивная	±2,9	±3,2
19	ПС 35 кВ Весенняя, ОПУ,	TTE 250/5	_	CЭT-4TM.03M.09 KT 0,5S/1,0	-327L 1907-09	B-3 51644-	Gen9 E5-	Активная	±1,6	±1,8
	ЩСН 0,4 кВ, ТСН-1 0,4 кВ	КТ 0,5S Рег. № 73808-19		Per. № 36697-17	RTU- Per.№41	yC . No	160 Ge	Реактивная	±3,1	±3,2
20	ПС 35 кВ Весенняя, ОПУ,	TTE 250/5		СЭТ-4ТМ.03М.09	Pe	Per	DF	Активная	±1,5	±1,9
20	ЩСН 0,4 кВ, ТСН-2 0,4 кВ	КТ 0,5S Рег. № 73808-19	-	КТ 0,5S/1,0 Рег. № 36697-17			HP	Реактивная	±2,8	±3,1
Пределы	допускаемой пог	решности СОЕВ,	c			, I			±	5

Примечания:

- 1 Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
- 2 В качестве характеристик погрешности ИК установлены пределы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95;
- 3 Погрешность в рабочих условиях указана для $\cos \phi = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1 20 от 0 до плюс 40 °C.
- 4 Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
 - 5 Допускается замена УСПД на аналогичное, утвержденного типа.
 - 6 Допускается замена УСВ на аналогичное, утвержденного типа.
- 7 Допускается замена ПО на аналогичное, с версией не ниже указанной в описании типа средств измерений;
- 8 Допускается замена сервера без изменения, используемого ПО (при условии сохранения цифрового идентификатора ПО);
 - 9 Допускается изменение наименования ИК без изменения объекта измерений.

Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение
1	2
Количество измерительных каналов	20
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 98 до 102
- ток, $\%$ от $\mathrm{I}_{\scriptscriptstyle{\mathrm{HOM}}}$	от 100 до 120
- Частота, Гц	от 49,85 до 50,15
 коэффициент мощности соѕф 	0,87
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, $\%$ от $I_{\text{ном}}$	от 5 до 120
- частота, Гц	от 49,6 до 50,4
 коэффициент мощности соѕф 	от $0,5$ _{инд.} до $0,8$ _{емк.}
- температура окружающей среды для ТТ и ТН, °С	от -45 до +40
- температура окружающей среды в месте расположения	
электросчетчиков, °С	от 0 до +40

продолжение таолицы 3	
1	2
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики СЭТ-4ТМ.03М.01:	
- среднее время наработки на отказ, ч, не менее	165000
- среднее время восстановления работоспособности, ч	2
Электросчетчики СЭТ-4ТМ.03М.09:	
- среднее время наработки на отказ, ч, не менее	165000
- среднее время восстановления работоспособности, ч	2
УСПД:	
- среднее время наработки на отказ, ч, не менее	75000
- среднее время восстановления работоспособности, ч	2
УСВ:	
- среднее время наработки на отказ, ч, не менее	45000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	45
- при отключении питания	10
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электропотребления по каждому каналу и электропотребление	
за месяц по каждому каналу, сут, не менее	100
- сохранение информации при отключении питания, лет,	
не менее	5
Сервер:	
- хранение результатов измерений и информации	
состояний средств измерений, лет, не менее	3,5

Надежность системных решений:

- резервирование электрического питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

Регистрация событий:

- в журнале событий электросчетчиков:
 - параметрирования;
 - пропадания питания;
- коррекции времени в электросчетчике с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство;
 - журнал УСПД:
 - параметрирования;
 - пропадания питания.
 - в журнале событий сервера ИВК: изменение значений результатов измерений;

изменение коэффициентов измерительных трансформаторов тока и напряжения; факт и величина синхронизации (коррекции) времени;

пропадание питания;

замена счетчика;

полученные с уровня ИИК «Журналы событий» счетчиков электроэнергии. Защищенность применяемых компонентов:

механическая защита от несанкционированного доступа и пломбирование:
 электросчетчиков;

промежуточных клеммников вторичных цепей напряжения;

испытательных коробок;

УСПД;

УСВ:

сервера БД;

- защита информации на программном уровне:

результатов измерений (при передаче, возможность использования электронной подписи);

установка пароля на электросчетчиках;

установка пароля на УСПД;

установка пароля на сервер БД.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 – Комплектность АИИС КУЭ

Наименование	Тип	Количество, шт
Трансформатор напряжения	НАЛИ-СЭЩ	4
Трансформатор тока	ТОЛ-СЭЩ	54
Трансформатор тока	TTE	6
Счетчик электрической энергии многофункциональный	CЭT-4TM.03M.01	18
Счетчик электрической энергии многофункциональный	CЭT-4TM.03M.09	2
УСПД	RTU-327L	1
Устройство синхронизации времени	УСВ-3	1
Программное обеспечение	ПО «АльфаЦЕНТР»	1
Сервер	HP DL160 Gen9 E5-2609v3	1
Методика поверки	МП 14-046-2020	1
Паспорт-формуляр	197-0.00-022-АКУ.Ф	1
Инструкция по эксплуатации КТС	197-0.00-022-АКУ.ИЭ	1

Поверка

осуществляется по документу МП 14-046-2020 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО ХК «СДС-Энерго» ПС 35 кВ Весенняя. Каналы измерительные. Методика поверки», утвержденному ФБУ «Кемеровский ЦСМ» 30.09.2020 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ.
 Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- счётчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, утвержденному ФБУ «Нижегородский ЦСМ» «03» апреля 2017 г.;
- УСПД RTU-327L по документу ДЯИМ.466215.007 МП «Устройства сбора и передачи данных серии RTU-327. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2009 г;
- устройство синхронизации времени УСВ-3 по документу «Инструкция. Устройства синхронизации времени УСВ-3. Методика поверки. ВЛСТ 240.00.000И1», утвержденному ГЦИ СИ ФГУП «ВНИИФТРИ» 2012 г.;
 - термогигрометр ИВА-6-Д, Рег. № 46434-11;
 - источник первичный точного времени УКУС-ПИ 02ДМ, Рег. № 60738-15.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих – кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений количества электрической энергии с использованием АИИС КУЭ ООО ХК «СДС-Энерго» ПС 35 кВ «Весенняя», аттестованном ФБУ «Кемеровский ЦСМ», регистрационный номер RA.RU.310473 от 11.02.2016 г. в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО ХК «СДС-Энерго» ПС 35 кВ «Весенняя»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью Холдинговая компания «СДС-Энерго» (ООО ХК «СДС-Энерго»)

ИНН 4250003450

Адрес: 650066, г. Кемерово, пр. Октябрьский, 53/2

Телефон/факс: (384-2) 57-42-02 Web-сайт: www. sdsenergo.ru E-mail: office@sdsenergo.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Кемеровской области» (ФБУ «Кемеровский ЦСМ»)

Адрес: 650991, Кемеровская область - Кузбасс, Кемеровский городской округ г. Кемерово, ул. Дворцовая, здание 2

Телефон: (3842) 36-43-89 Факс: (3842) 75-88-66 Web-сайт: www.kmrcsm.ru E-mail: kemcsm@kmrcsm.ru

Регистрационный номер RA.RU.312319 от 21.11.2017 г. в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.