ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Устройства измерения и формирования давления системы управления тормозами поездов повышенного веса и длины

Назначение средства измерений

Устройства измерения и формирования давления системы управления тормозами поездов повышенного веса и длины (далее – СУТП) предназначены для измерений избыточного давления сжатого воздуха, а также формирования давления и ступеней торможения в тормозной сети подвижных железнородорожных составов.

Описание средства измерений

Принцип действия устройства измерения и формирования давления системы СУТП основан на измерении избыточного давления сжатого воздуха в контрольных точках пневматических тормозов подвижного железнодорожного состава с помощью тензорезистивных датчиков давления.

Под воздействием измеряемого давления чувствительные элементы датчиков деформируются, что приводит к изменению электрического сопротивления тензорезистивных элементов. При этом возникает электрический сигнал, пропорциональный измеряемому давлению, который преобразуется в нормированный выходной электрический сигнал и поступает для обработки на узел микропроцессорного контроллера.

Контроллер производит измерение и обработку сигналов тензорезистивных датчиков давления и управляет работой узла электропневматических клапанов для формирования давления в контрольных точках пневматических тормозов подвижных железнодорожных составов. Устройство измерения и формирования давления системы СУТП имеет возможность сохранять данные измерений во встроенной энергонезависимой памяти и передавать их на другие части системы СУТП через радиомодем.

Основными узлами устройства измерения и формирования давления системы СУТП являются узел преобразователей давления, узел микропроцессорного контроллера, узел электропневматических клапанов и источник питания.

Выпускаются две модификации устройства измерения и формирования давления системы СУТП: СУТП-В, встраиваемого в блок хвостового вагона (БХВ) системы СУТП, который подключается к тормозной магистрали хвостового вагона (вагонный полукомплект), и СУТП-Л, встраиваемого в регулятор локомотивного торможения (РЛТ) системы СУТП, который подключается к крану машиниста локомотива (локомотивный полукомплект). Указанные модификации отличаются диапазоном измерений, массой и габаритными размерами. Устройство измерения и формирования давления системы СУТП, модификация СУТП-Л имеет также дополнительные функции - оно обеспечивает формирование зарядного давления; формирование торможения, приближенного к экстренному, и формирование ликвидации сверхзарядного давления.

В соответствии с заказом допускается изготовление устройств измерения и формирование давления системы СУТП с диапазонами измерений в единицах измерения давления, допущенных к применению в РФ (кПа, гПа, МПа, кгс/см 2).

Общий вид устройства измерения и формирования давления системы СУТП, модификации СУТП-Л, встроенного в регулятор локомотивного торможения, без крана машиниста локомотива (локомотивный полукомплект) приведен на рисунке 1, общий вид устройства измерения и формирования давления системы СУТП, модификации СУТП-В, встроенного в блок хвостового вагона (вагонный полукомплект) приведен на рисунке 2.

Во избежание несанкционированного вскрытия корпуса устройства измерения и формирования давления системы СУТП защищены разрушающейся при вскрытии наклейкой. При попытке вскрытия корпуса целостность наклейки нарушается.

Схема пломбировки от несанкционированного доступа представлена на рисунке 3.

Рисунок 1 - Общий вид устройства измерения и формирования давления системы СУТП, модификации СУТП-Л, встроенного в регулятор локомотивного торможения, без крана машиниста локомотива (локомотивный полукомплект)

Рисунок 2 - Общий вид устройства измерения и формирования давления системы СУТП, модификации СУТП-В, встроенного в блок хвостового вагона (вагонный полукомплект)

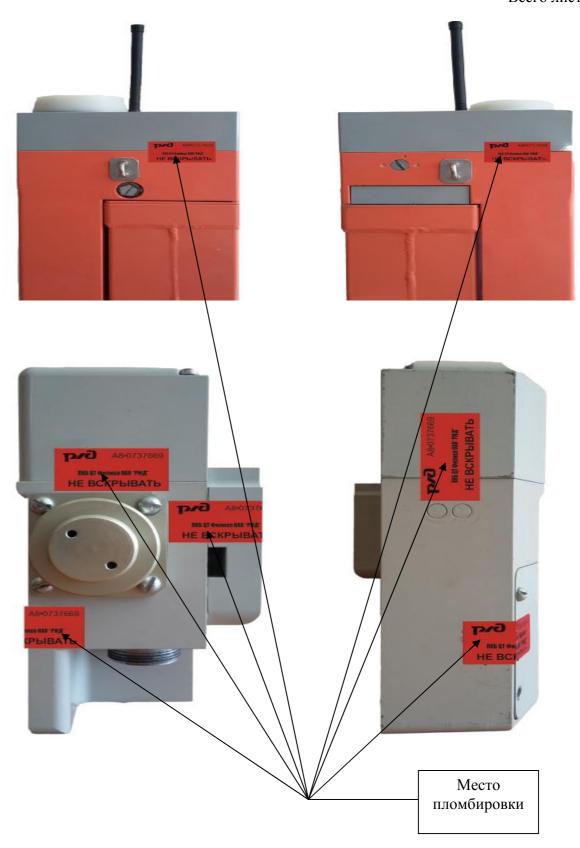


Рисунок 3 - Схема пломбировки устройства измерения и формирования давления системы СУТП

Программное обеспечение

Блок хвостового вагона (БХВ) системы СУТП и регулятор локомотивного торможения (РЛТ) системы СУТП имеют в своем составе микроконтроллеры с ПО.

Программное обеспечение БХВ обеспечивает:

- прием команд управления пневматическими тормозами от РЛТ;
- выполнение команд полученных от РЛТ;
- запись функционирования БХВ в энергонезависимую память.

Программное обеспечение РЛТ обеспечивает:

- прием команд управления пневматическими тормозами от крана машиниста;
- передачу команд управления пневматическими тормозами БХВ;
- запись основных параметров функционирования в энергонезависимую память.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки) программного	Значение	
обеспечения		
Идентификационное наименование программного обес-		
печения:		
- регулятора локомотивного торможения (РЛТ) локомо-		
тивного полукомплекта	РЛТ	
- блока хвостового вагонного (БХВ) вагонного полуком-		
плекта	БХВ	
Номер версии (идентификационный номер) программного		
обеспечения:		
- регулятора локомотивного торможения (РЛТ) локомо-		
тивного полукомплекта	не ниже 4.1	
- блока хвостового вагонного (БХВ) вагонного полуком-		
плекта	не ниже 6.8	

Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение	
1	2	
Диапазон измерений давления в тормозной магистрали,		
кПа	от 0 до 600	
Пределы допускаемой абсолютной погрешности измере-		
ний давления в тормозной магистрали, кПа:		
- в диапазоне от 0 до 300 кПа включ.	±10	
- в диапазоне св. 300 до 600 кПа	±5	
Диапазон измерений давления в уравнительном резервуа-		
ре крана машиниста, кПа	от 0 до 900	
Пределы допускаемой абсолютной погрешности измере-		
ний давления в уравнительном резервуаре крана машини-	ии-	
ста, кПа:		
- в диапазоне от 0 до 300 кПа включ.	±10	
- в диапазоне св. 300 до 600 кПа включ.	±5	
- в диапазоне св. 600 до 900 кПа	±10	
Диапазон формирования зарядного давления в уравни-		
тельном резервуаре крана машиниста, кПа	от 450 до 550	

Продолжение таблицы 2

1	2
Пределы допускаемой абсолютной погрешности форми-	
рования зарядного давления в уравнительном резервуаре	
крана машиниста, кПа	±5

Основные технические характеристики устройства измерения и формирования давления системы СУТП, модификации СУТП-В и модификации СУТП-Л приведены в таблице 3 и таблице 4.

Таблица 3- Основные технические характеристики устройства измерения и формирования давления системы СУТП, модификации СУТП-В

Наименование характеристики	Значение	
Формирование первой ступени торможения снижением		
давления в тормозной магистрали, кПа	от 55 до 60	
Формирование повторных ступеней торможения сниже-		
нием давления в тормозной магистрали, кПа	от 15 до 20	
Напряжение питания постоянного тока от аккумулятор-		
ной батареи, В	от 10,8 до 13,2	
Потребляемый ток с радиомодемом, А, не более	0,15	
Габаритные размеры, мм не более:		
- длина	800	
- ширина	300	
- высота	200	
Масса, кг не более	12	
Время работы от одной аккумуляторной батареи без под-		
зарядки при температуре окружающего воздуха -30 °C, ч,		
не менее	20	
Условия эксплуатации:		
- температура окружающей среды, °С	от -40 до +60	
- относительная влажность при температуре окружающей		
среды +25 °C, %, не более	98	

Таблица 4- Основные технические характеристики устройства измерения и формирования давления системы СУТП, модификации СУТП-Л

Наименование характеристики	Значение		
1	2		
Формирование первой ступени торможения снижением			
давления в уравнительном резервуаре крана машиниста,			
кПа	от 55 до 60		
Формирование повторных ступеней торможения сниже-			
нием давления в уравнительном резервуаре крана маши-			
ниста, кПа	от 15 до 20		
Темп снижения давления в уравнительном резервуаре			
крана машиниста с 550 до 450 кПа за период, с	От 4 до 6		
Формирование первой ступени торможения, приближен-			
ного к экстренному торможению, снижением давления в			
тормозной магистрали с темпом снижения с 550 до			
450 кПа за период, с	от 2 до 5		
A			

Формирование ликвидации сверхзарядного давления в уравнительном резервуаре крана машиниста с темпом снижении на 20 кПа за время от 80 до 120 с, повышения давления в уравнительном резервуаре крана машиниста выше зарядного давления

Продолжение таблицы 4

1	2	
Напряжение питания постоянного тока, В	от 43,2 до 52,8	
Потребляемый ток, А, не более	0,5	
Потребляемая мощность, Вт, не более	30	
Габаритные размеры (длина×ширина×высота), мм, не бо-	250×200×90	
лее		
Масса, кг, не более	4	
Условия эксплуатации:		
- температура окружающей среды, °С	от -40 до +60	
- относительная влажность при температуре окружающе-		
го воздуха +25 °C, %, не более	98	

Знак утверждения типа

наносится фотохимическим или механическим способом на шильдики, прикрепленные к блокам БХВ и РЛТ, и типографским способом в верхнем правом углу титульного листа руководства по эксплуатации системы управления тормозами поездов повышенного веса и длины СУТП.

Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество	Примечание
Блок хвостового вагона (БХВ) с			
встроенным устройством СУТП-В	СУТП.01.000 1	1 комплект	с радиомодемом
Блок регулятора локомотивного			
торможения (РЛТ) с встроенным			
устройством СУТП-Л	СУТП.02.000 1	1 комплект	-
Руководство по эксплуатации	СУТП.00.000 РЭ	1 экз.	-
Методика поверки	РТ-МП-5340-443-2019	1 экз.	-

Поверка

осуществляется по документу РТ-МП-5340-443-2019 «ГСИ. Устройства измерения и формирования давления системы управления тормозами поездов повышенного веса и длины. Методика поверки», утвержденному ФБУ «Ростест-Москва» 02.12.2019 г.

Основные средства поверки:

манометр деформационный образцовый с условной шкалой типа МО, с верхним пределом измерений 1,0 МПа, класса точности 0,15 (регистрационный номер в Федеральном информационном фонде 5768-76);

секундомер механический СОСпр (регистрационный номер в Федеральном информационном фонде 11519-96).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится, в виде оттиска поверительного клейма, на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к устройствам измерения и формирования давления системы управления тормозами поездов повышенного веса и длины

ТУ 3184-032-48588818-2011 Система управления тормозами поездов повышенного веса и длины (СУТП). Технические условия

Изготовитель

Акционерное общество «РИТМ» Тверское производство тормозной аппаратуры (АО «РИТМ» ТПТА) ИНН 6902006851

Адрес: 170040, г. Тверь, проспект 50 лет Октября, дом 45 Телефон: +7 (4822) 41-56-03, факс: +7 (4822) 41-56-04

E-mail: ritm@tpta.ru

Заявитель

Проектно-конструкторского бюро локомотивного хозяйства – филиала ОАО «РЖД»

Адрес: 105066, г. Москва, переулок Ольховский, дом 205 Телефон: +7 (499) 262-73-62, факс: +7 (499) 262-12-10

E-mail: mail@pkbct.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве и Московской области» (ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, 31

Телефон: +7 (495) 544-00-00, +7 (499) 129-19-11, факс: +7 (499) 124-99-96

E-mail: <u>info@rostest.ru</u> Web-сайт: <u>www.rostest.ru</u>

Регистрационный номер RA.RU.310639 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____»_____2020 г.