ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений количества водородосодержащего газа с химзавода АО «АНХК» в АО «АЗП»

Назначение средства измерений

Система измерений количества водородосодержащего газа с химзавода «АНХК» в АО «АЗП» (далее - система) предназначена для измерений объемного расхода (объема) приведенного к стандартным условиям по ГОСТ 2939-63, массы, температуры и давления водородосодержащего газа (далее - газ).

Описание средства измерений

Принцип действия системы заключается в непрерывном измерении, преобразовании и обработке при помощи комплекса измерительно-вычислительного и управляющего STARDOM (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений (далее - регистрационный № 27611-14) входных сигналов, поступающих по измерительным каналам (далее - ИК) от первичных и промежуточных измерительных преобразователей (далее - ИП).

Система представляет собой единичный экземпляр измерительной системы, спроектированный для конкретного объекта из компонентов серийного изготовления. Монтаж и наладка системы осуществлены непосредственно на объекте эксплуатации в соответствии с проектной документацией системы и эксплуатационными документами ее компонентов.

Система осуществляет измерение объемного расхода (объема), температуры и давления следующим образом:

Расходомер-счетчик вихревой объемный YEWFLO DY (регистрационный № 17675-09), термопреобразователь сопротивления серии TR модификации TR12-B (регистрационный № 71870-18) с преобразователем вторичным серии T модификации T32.1S (регистрационный № 68058-17) и преобразователь (датчик) давления измерительный EJ* модели EJX510A (регистрационный № 59868-15) преобразуют текущие значения расхода, температуры и абсолютного давления в аналоговые унифицированные электрические сигналы силы постоянного тока (от 4 до 20 мА), которые поступают на входы преобразователей измерительных серии МТL5500 модели 5544 (регистрационный № 39587-14). Аналоговые унифицированные электрические сигналы силы постоянного тока (от 4 до 20 мА) от преобразователей измерительных серии МТL5500 модели 5544 поступают на входы модуля аналоговых входов NFAI143 контроллера STARDOM FCN-RTU из состава комплекса измерительно-вычислительного и управляющего STARDOM.

Контроллеры STARDOM FCN-RTU выполняют преобразование выходных сигналов ИП в значения объемного расхода, температуры и абсолютного давления. Полученные значения физических величин отображаются на мнемосхемах монитора станции оператора в виде числовых значений, текстов, гистограмм, трендов.

Вычисление физических свойств газа проводится в соответствии с ГСССД МР 118-05. Система обеспечивает выполнение следующих основных функций:

- измерение объемного расхода газа в рабочих условиях;
- измерение температуры, абсолютного давления газа;
- вычисление физических свойств газа;
- вычисление объемного расхода газа, приведенного к стандартным условиям;
- вычисление количества перекаченного газа в единицах массы и объема приведенного к стандартным условиям за заданный период времени (час, сутки, месяц, год);
- индикация, регистрация, хранение и передача в общезаводскую сеть (MES) текущих, средних и интегральных значений измеряемых и вычисляемых параметров;
- формирование на основе архивных данных установленных форм отчетных документов;
- контроль и индикация предельных значений измеряемых параметров;
- защита системной информации от несанкционированного доступа программными средствами (введением паролей доступа).

Пломбирование системы не предусмотрено.

Программное обеспечение

Программное обеспечение (далее - ПО) системы, обеспечивающее реализацию функций системы, состоит из встроенного системного и прикладного ПО контроллера и панели оператора.

В комплексе измерительно-вычислительном и управляющем STARDOM установлено прикладное модульное ПО: «Комплекс программно-технических средств вычислений расхода жидкостей и газов на базе комплекса измерительно-вычислительного и управляющего STARDOM» (далее – КПТС «STARDOM-Flow»).

Встроенное ПО размещается в энергонезависимой памяти контроллера и недоступно для считывания и модификации в процессе эксплуатации. Идентификационные данные метрологически значимой части ПО представлены в таблицах 1 и 2.

Таблица 1 – Идентификационные данные встроенного системного ПО контроллера

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	STARDOM (FCN)	
Номер версии (идентификационный	Версия операционной системы (OS Revision) и	
номер) ПО	загрузочного ПЗУ (BootROM Revision) не ниже	
	R3.01.00; версия среды исполнения Java (JEROS	
	Revision) не ниже JRS: R2.01.00	
Цифровой идентификатор ПО	-	

Таблица 2 – Идентификационные данные ПО КПТС «STARDOM-Flow»

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	КПТС «STARDOM-Flow»	
Номер версии (идентификационный номер) ПО	V2.5	
Цифровой идентификатор ПО	Модуль расчёта расхода при применении объемных преобразователей расхода (0хА2С3) Модуль расчета физических свойств умеренно сжатых газовых смесей (0х3F7A)	
Алгоритм вычисления цифрового идентификатора ПО	CRC16	

Защита модулей ПО КПТС «Stardom-Flow» от несанкционированного доступа и изменений случайного характера осуществляется встроенным в операционную систему комплекса измерительно-вычислительных и управляющего STARDOM механизмом защиты. Операционная система комплекса измерительно-вычислительных и управляющего STARDOM является «закрытой» системой и загружается индивидуально во внутреннюю flash-память с индивидуальной системной лицензией.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Влияние встроенного программного обеспечения учтено при нормировании метрологических характеристик.

Метрологические и технические характеристики

Таблица 3 – Метрологические характеристики

38677 3248,8
3248,8
3248,8
+50
4,0

Таблица 4 – Основные технические характеристики

Наименование характеристики Значение		
Измеряемая среда	Водородосодержащий газ	
Температура измеряемой среды, °С	от -29 до +37	
Абсолютное давление измеряемой среды, МПа	от 2,6 до 3,6	
Условия эксплуатации:		
- температура окружающей среды, °С:		
• в местах размещения расходомера и	от -40 до +37	
термопреобразователя сопротивления		
• в местах размещения преобразователя давления (в	от 0 до +40	
термочехле)		
• в месте размещения оборудования комплекса		
измерительно-вычислительного и управляющего	от +20 до +25	
STARDOM и рабочей станции оператора	01 +20 д0 +23	
- атмосферное давление, кПа	от 84 до 106,7	
- относительная влажность воздуха, %	не более 90, без конденсации влаги	
Параметры электрического питания:		
- напряжение переменного тока, В	от 198 до 242	
- частота переменного тока, Гц	50±1	

Знак утверждения типа

наносится на титульный лист паспорта-формуляра типографским способом.

Комплектность средства измерений

Комплектность средства измерений представлена в таблице 5.

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество
Система измерений количества водородосодержащего газа с химзавода AO «АНХК» в AO «АЗП» заводской № 012.000.000-ATX-TT-001	YRU.C173443.02	1 шт.
Паспорт-формуляр	YRU.C173443.02.ΠΦ	1 экз.
Методика поверки	МП-236-RA.RU.310556- 2019	1 экз.
Комплект эксплуатационных документов на комплектующие изделия, входящие в состав системы	-	1 экз.

Поверка

осуществляется по документу МП-236-RA.RU.310556-2019 «ГСИ. Система измерений количества водородосодержащего газа с химзавода АО «АНХК» в АО «АЗП». Методика поверки», утвержденному ФГУП «СНИИМ» $28.11.2019~\Gamma$.

Основные средства поверки:

- средства поверки в соответствии с документами на поверку средств измерений, входящих в состав системы;
- калибратор электрических сигналов СА150 (Регистрационный № 53468-13), диапазон воспроизведения силы постоянного тока от 0 до 22 мА, пределы допускаемой основной погрешности воспроизведения $\pm (0,025~\%~X~+~3~$ мкА), где X~- установленное значение/100 %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемого СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе 503-RA.RU.311735-2019 «Масса и объем водородосодержащего газа. Методика измерений с применением системы измерений количества водородосодержащего газа с химзавода АО «АНХК» в АО «АЗП»», аттестованной ФГУП «СНИИМ». Свидетельство об аттестации №503-RA.RU.311735-2019.

Нормативные документы, устанавливающие требования к системе измерений количества водородосодержащего газа с химзавода АО «АНХК» в АО «АЗП»

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

ГСССД MP 118-05 Расчет плотности, фактора сжимаемости, показателя адиабаты и коэффициента динамической вязкости умеренно-сжатых газовых смесей.

ГОСТ 2939-63 Газы. Условия для определения объема.

Изготовитель

Общество с ограниченной ответственностью «Иокогава Электрик СНГ» (ООО «Иокогава Электрик СНГ»)

ИНН 7703152232

Адрес: 129090, г. Москва, Грохольский переулок, д.13, стр.2

Телефон: +7 (495) 737-78-68, факс: +7 (495) 737-78-69

E-mail: info@ru.yokogawa.com

Испытательный центр

Западно-Сибирский филиал Федерального государственного унитарного предприятия «Всероссийский научно - исследовательский институт физико-технических и радиотехнических измерений» (Западно-Сибирский филиал ФГУП «ВНИИФТРИ»)

Адрес: 630004, г. Новосибирск, пр. Димитрова, 4 Телефон: +7 (383) 210-08-14, факс: +7 (383) 210-13-60

E-mail: director@sniim.ru

Аттестат аккредитации Западно-Сибирского филиала ФГУП «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____ 2020 г.