ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Калориметры дифференциальные сканирующие DSC 3500 Sirius

Назначение средства измерений

Калориметры дифференциальные сканирующие DSC 3500 Sirius (далее - калориметры) предназначены для измерений термодинамических характеристик (температуры и теплоты фазовых и структурных превращений, удельной теплоемкости) твердых и порошкообразных веществ в процессе их нагрева.

Описание средства измерений

Принцип действия калориметра основан на измерении разности тепловых потоков между контейнером, в котором размещен исследуемый образец, и контейнером, в котором размещен образец сравнения, при одновременном, регулируемом по скорости нагревании печи до заданной температуры.

Принцип измерений температуры фазовых и структурных превращений основан на определении на кривой «тепловой поток – температура» точки начала отклонения от монотонности, определяемой пересечением экстраполяции низкотемпературной ветви пика кривой с базовой линией. Интеграл от разности тепловых потоков по температуре в пересчете на единицу массы дает удельную теплоту фазового или структурного превращения. А с учетом отнесения к диапазону температуры, в котором осуществлено измерение разности тепловых потоков, по данному интегралу в пересчете на единицу массы определяется удельная теплоемкость образца.

Калориметры состоят из измерительного блока с калориметрическими ячейками, размещенными внутри программно-управляемой печи, системы контроля температуры образца, системы контроля атмосферы образца, конструктивно расположенных в одном металлическом корпусе, и автоматической системы управления на базе IBM совместимого компьютера. На задней панели корпуса калориметров расположены вводы для подсоединения внешних устройств и штуцеры для подключения и прокачки хладоносителя и продувки инертным защитным газом.

Датчик прибора DSC 3500 Sirius, представляет собой константановый монолитный диск, на котором размещаются и измеряемая ячейка, и ячейка сравнения. датчик припаян к печи.

Управление процессом измерений и обработки выводимой информации в калориметрах осуществляется от IBM-совместимого персонального компьютера с помощью специального программного комплекса «NETZSCH-Proteus». Программным образом осуществляется настройка калориметров, выбор режимов и установка параметров эксперимента, градуировка калориметров на основе измерений свойств стандартных образцов, оптимизация параметров, управление работой, обработка выходной информации, печать и запоминание результатов анализа.

В процессе измерений на дисплей персонального компьютера выводится в режиме реального времени значения теплового потока [мВт] – (ось Y), как функция температуры [t, °С или K] либо времени [τ , мин или сек]. По завершению опыта с помощью специального раздела ПО вычисляются искомые температура фазового или структурного превращения (T, °С или K), удельная теплота фазового или структурного превращения (Δ H, Дж/кг) и удельная теплоемкость (C, Дж/кг·К).

Общий вид средства измерений представлен на рисунке 1.

Схема пломбировки от несанкционированного доступа представлена на рисунке 2.

Рисунок 1 – Общий вид DSC 3500 Sirius

Рисунок 2 – Схема пломбировки от несанкционированного доступа калориметра дифференциального сканирующего DSC 3500 Sirius 1 – замки на блоках управления калориметров DSC 3500 Sirius

Программное обеспечение

Программное обеспечение «NETZSCH-Proteus» (далее $-\Pi O$) калориметров состоит из встроенной части (встроенный в корпус калориметра, защищенный от записи микроконтроллер) и внешней части под управлением операционной системой персонального компьютера (автономное ΠO , идентификационное наименование Proteus).

Встроенное ПО калориметров разработано изготовителем специально для решения задач измерений температуры и дифференциальной термо-ЭДС датчика ДСК.

Автономное программное обеспечение обеспечивает обработку измеренных данных (оценку количества теплоты фазовых или структурных превращений, расчет удельной теплоты фазовых и структурных превращений, удельной теплоемкости), отображение и хранение результатов измерений, а также задание параметров управления и режимов работы калориметра. Автономное ПО получает данные от калориметра по интерфейсу USB без возможности внесения изменений в ПО.

Уровень защиты ПО «средний» в соответствии с Р 50.2.077-2014

Нормирование метрологических характеристик проведено с учетом влияния ПО.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение		
	Автономное ПО «NETZSCH-Proteus»	Встроенное ПО «NETZSCH-Proteus»	
Идентификационное наименование ПО	Proteus	-	
Номер версии (идентификационный номер) ПО	не ниже 7.1.0.0	не ниже 7.1.0	
Цифровой идентификатор ПО	-		

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон показаний температуры*, °С	от -170 до +600
Диапазон измерений температуры*, °С	от +30 до +600
Диапазон измерений удельной теплоты фазовых и структурных превращений*, кДж/кг	от 10 до 1000
Диапазон измерений удельной теплоемкости*, Дж/(кг.	от 200 до 2000

Продолжение таблицы 2

TPOGOTIMOTITO TROUTINGS 2	
Наименование характеристики	Значение
Пределы допускаемой абсолютной погрешности	±3,0
измерений температуры, °С	,
измерении температуры, С	
Пределы допускаемой относительной погрешности	±3,0
измерений удельной теплоты фазовых и структурных	,
1 1 11 11	
превращений, %	
Пределы допускаемой относительной погрешности	±3,0
измерений удельной теплоемкости, %	,
измерении удельной теплосмкости, 70	
Скорость изменения температуры, °С/мин	от 0,001 до 100,0
1 71 ,	<u> </u>

^{*)} Диапазоны показаний и измерений метрологических характеристик приведены для максимально полной комплектации DSC 3500 Sirius и могут быть сокращены в зависимости от объема комплектации на более узкие поддиапазоны

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Напряжение питания, В	$220^{+10\%}_{-15\%}$
Частота напряжения питания, Гц	50±1
Потребляемая мощность, кВ·А, не более (без устройства охлаждения)	0,6
Масса, кг (измерительный блок), не более	28,0
Габаритные размеры, мм (измерительный блок), не более	
Глубина	520
Ширина	380
Высота	320
Средний срок службы, лет	10
Средняя наработка на отказ, ч	11500
Условия эксплуатации:	
Диапазон температуры окружающего воздуха, °С	от +15 до +25
Диапазон атмосферного давления, кПа	от 84 до 106,7
Диапазон относительной влажности воздуха, %	от 15 до 80

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом и на корпус калориметра любым способом, обеспечивающим сохранность знака утверждения типа в течение всего срока службы калориметра.

Комплектность средства измерений

Таблица 4 – Комплектность калориметра

Наименование	Обозначение	Количество
Калориметр дифференциальный	DSC 3500 Sirius	1 шт.
сканирующий		
Руководство по эксплуатации	Калориметр дифференциальный сканирующий DSC 3500 Sirius, руководство по эксплуатации	1 экз.
Методика поверки	МП 2416-0040-2018	1 экз.

Дополнительно в комплект поставки могут включаться:

- системы охлаждения;
- системы продувки, в том числе вакуумные насосы и компрессоры;
- комплекты стандартных образцов;
- прессы с пресс-формами;
- тигли;
- наборы для пробоподготовки.

Поверка

осуществляется по документу МП 2416-0040-2018 «ГСИ. Калориметры дифференциальные сканирующие DSC 3500 Sirius. Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» 14 сентября 2018 г.

Основные средства поверки:

- Комплект СОТСФ (стандартные образцы температур и теплот фазовых переходов) утвержденного типа ГСО 2312-82/ГСО 2316-82;
- Стандартный образец термодинамических свойств СОТС-1 утвержденного типа, ГСО 149-86П;
- Стандартный образец термодинамических свойств (хлористый калий) COTC-5 утвержденного типа, ГСО 1363-78.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к калориметрам дифференциальным сканирующим DSC 3500

ГОСТ 8.141-75 ГСИ. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений удельной теплоемкости в диапазоне температур 273,15...700 К

Техническая документация фирмы " NETZSCH-Gerätebau GmbH", Германия

Изготовитель

Фирма «NETZSCH-Gerätebau GmbH», Германия

Адрес: Germany, D-95100, Selb, Wittelsbacher str.42/ Германия, D-95100, Зельб, Виттельсбахерштрассе, 42)

Web-сайт: www.netzsch.com

Заявитель

Филиал общества с ограниченной ответственностью «Нетч-Герэтебау ГмбX» (Филиал ООО «Нетч-Герэтебау ГмбX», (Германия))

ИНН 9909182178

Адрес: 117198, г. Москва, Ленинский пр., 113/1, оф. 413Д

Телефон/факс: +7 (499) 272-0532

E-mail: ngb@netzsch.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

ИНН 7809022120

Адрес: 190005, г. Санкт-Петербург, Московский пр., 19 Телефон: +7 (812) 251-76-01 (факс: +7 (812) 713-01-14)

Web-сайт: <u>www.vniim.ru</u> E-mail: <u>info@vniim.ru</u>

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____2019 г.