MOTINA ® TELLING MOHITAK

АО «Комплектэнергоучет»

Утверждаю: Директор АО «Комплектэнергоучет»

Данилина Н.М.

Системы автоматизированные информационно-измерительные учета энергоресурсов «ТОТЭМ» (АИИС УЭ «ТОТЭМ»)

Руководство по эксплуатации

203.53-014-РЭ.МП

УТВЕРЖДАЮ

раздел 9 «Методика поверки» Заместитель директора по производственной метрологии

В.Иванникова

2018г.

2018 год

СОДЕРЖАНИЕ 4. Устройство и работа......11 Программное обеспечение 13 Подключение кабелей информационной сети RS 485, RS 232, CAN......14 Подготовка компонентов систем к установке на месте эксплуатации......15 Тодпись и дата № дубл. ИНВ. ⋛ инв. Взам. Подпись и дата 203.53-014-P9,MΠ Изм. Лист № докум. Подп. Дата Разраб. Власенко Лит. Лист Листов Системы автоматизированные Инв. № подл. информационно-измерительные учета Власенко Пров. 2 20 энергоресурсов «ТОТЭМ» (АИИС УЭ Выпус. «TOTЭM») Руководство по эксплуатации и Н. контр. методика поверки Утв. Калко

Настоящий документ предназначен для определения основных технических и эксплуатационных характеристик систем автоматизированных информационно-измерительных учёта энергоресурсов АИИС УЭ «ТОТЭМ» (далее системы), содержит сведения, необходимые для их изготовления, правильного монтажа, эксплуатации и поверки.

1. Назначение

Системы предназначены для организации процесса автоматизированного измерения и контроля и учета энергоресурсов (электроэнергии, мощности, газа, холодной и горячей воды, тепла и других энергоресурсов). Системы выполняют автоматический сбор, накопление, обработку, хранение и отображение собранной информации привязанной к календарному времени, а так же осуществляют формирование отчетов о потреблении энергоресурсов в электронном и бумажном виде.

Область применения: энергопотребляющие и энергопоставляющие предприятия.

Системы обеспечивают:

- Контроль учетных показателей энергоресурса;
- Контроль баланса потребления/передачи энергоресурса;
- Контроль качества поставляемого энергоресурса;
- Синхронизацию времени всех уровней системы;
- Хранение собранных данных за необходимый период времени;
- Отображение собранной информации в графическом и табличном виде;
- Создание отчетов для проведения анализа потребления/передачи энергоресурса;
- Формирование требуемых отчетных форм и автоматизированной передачи собранных данных в центры сбора информации предприятия, ресурсоснабжающих организаций и смежных компаний.

2. Состав систем и основные функции их компонентов

Системы компонуются на объекте эксплуатации из серийно выпускаемых средств измерений, внесенных в Федеральный информационный фонд по обеспечению единства измерений. Выбор необходимой конфигурации производится при проектировании систем для конкретного варианта применения.

Преобразование определённого вида энергоресурса и вычислительные функции учета энергоресурса, а так же привязку измеренных/вычисленных данных к единому календарному времени, осуществляют счетчики соответствующего энергоресурса (уровень ИИК).

Системы должны быть спроектированы таким образом, чтобы образующие систему разнотипные ИК, включали в себя компоненты, указанные в перечне допустимых составных частей системы учета энергоресурсов. Конкретный состав систем определяется проектной документацией на неё. Все технические составные части/компоненты являются средствами измерений.

Перечень допустимых составных частей системы учета энергоресурсов и возможный состав измерительных каналов (ИК) приведен в таблице 1:

Изм. Лист № докум. Подп. Дата

203.53-014-P9,MΠ

Измерительный канал	Измерительные компоненты систем	Нормативные документы	Наименование	ΓΟCPEECTP №	Примечания
и мощности	Измерительные трансформаторы тока (ТТ)	FOCT 7746-2001	ТОП 0,66 ТПОЛ-10У3 ТЛШ ТОЛ-10 ТЛО-10 ТВ-ЭК СТ24 СТ12 SVA Т-0,66 ТШП-0,66 ТНШЛ ТПП-0,66 ТПЛ-10	40110-08 51178-12 47957-11 38395-08 25433-11 39966-10 39750-08 39749-08 38612-08 52667-13 47957-11 47957-11 53994-13 54717-13	Класс точности 0,2; 0,2s; 0,5; 0,5s; 1,0
Активной и реактивной электроэнергии и мощности	Измерительные трансформаторы напряжения (TH)	FOCT 1983-2001	SU245/300/362/420/1-6 НДЕ-М-110 НДЕ-М-220 VTS-VTD VRQ2n/S2 VRQ2n/S3 НТМИ-10	39470-08 38885-08 38885-08 38210-08 47913-11 50058-12	Класс точности 0,2; 0,5
Активной 1	Статические счётчики ваттчасов активной энергии переменного тока	ГОСТ Р 52323; ГОСТ 31819.22	Меркурий-200 Меркурий 203.2Т Меркурий 206 Меркурий 230 Меркурий234 Маяк 101АТ Маяк Т301АРТ	24410-07 55299-13 46746-11 25617-07 48266-11 52794-14 57639-14	Класс точности 0,5s; 1,0

Подпись и дата

Инв. № дубл.

Взам. инв. №

Подпись и дата

Инв. № подл.

Копировал

Формат А4

Продолжение таблицы 1.

Подпись и дата

Nº ∂y6л.

ИНВ

No

инв.

Взам.

Подпись и дата

Инв. № подл.

Измерительный канал	Измерительные компоненты систем	Нормативные документы	Наименование	ΓΟCPEECTP №	Примечания
Расхода и количества газа	Комплексы Измерительные	ΓΟСТ P 50818; ΓΟСТ 28724-90; ΓΟСТ P 8.740-2011;	Логика 7761, Логика 6761, Логика 6762, Логика 7742	60936-15 51002-12 55780-13 51001-12	Погрешность измерений $\pm 3\%$ — в диапазоне от Q_{min} до Qnom; не более $\pm 1\%$ — в диапазоне от Qnom до Q_{max} .
Тепловой энергии и количества теплоносителя	Тепло-счётчики	ГОСТ Р 51649 ГОСТ Р ЕН 1434-1-2011 МИ 2412-97	Логика 8941 Логика 8943 Логика 6961 Логика 6962 ВЗЛЕТ ТСР-М ТЗ4 ТСК5 ТСК71 КМ-5 КМ-9 ЭЛЬФ КАРАТ-307 ТС.ТМК-H СТУ-1 СКМ-2 ТМ-3Э	43409-15 43505-15 54511- 1365010- 1627011-13 48334-11 20196-11 53289-13 18361-10 38254-08 46059-11 46059-11 21288-14 26532-09 47039-11 48235-11	Класс 1, 2 ГОСТ Р ЕН 1434-1-2011 Класс В, С ГОСТ Р 51649-2000

Примечание. Возможно применение других типов измерительных компонентов систем, подпадающих под действие; ГОСТ 31819.21; ГОСТ 31819.22; ГОСТ 31819.23; ГОСТ Р 52422; ГОСТ Р 52423; ГОСТ Р 52425; ГОСТ 7746-2001; ГОСТ 1983-2001; ГОСТ Р 50601; ГОСТ 28723; ГОСТ 14167; ГОСТ Р 50818; ГОСТ Р 51649; ГОСТ 28724, из числа внесенных в Федеральный информационный фонд по обеспечению единства измерений, при применении которых в составе ИК характеристики погрешности не уступают приведенным в таблице 1.

Допускается использование первичных устройств учёта других типов, изготовленных по ГОСТ и внесённых в Федеральном информационном фонде по обеспечению единства измерений.

						203.53-014-P9,MΠ	Лист
Изм.	Лист	№ докум.	Подп.	Дата			5
					Копировал	Формат А4	

2.1 Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики ИК активной электроэнергии

	Состав канала	Границы интервала		
	Coctab kahalla			
Трансформаторы	нсформаторы Трансформаторы Сч		основной относительной	
тока, класс	напряжения, класс	электрической	погрешности ИК для	
точности	точности	энергии, класс	вероятности 0,95,	$(\pm\delta)$,%
		точности	$(\pm\delta)$,%	
_	_	0,5S	0,6	1,9
	_	1,0	1,1	
0,2	0,2	0,5S	0,7	2,3
0,2	0,2	1,0	1,2	Границы интервала основной погрешности, в рабочих условиях (±δ),% 1,9 3,6 2,3 3,8 2,3 3,8 2,0 3,6 2,1 3,7 2,4 3,8 2,5 3,9 3,4 4,6
0,2	0,5	0,5S	0,9	2,3
0,2	0,5	1,0	1,3	
0,2S	0,2	0,5S	0,7	2,0
0,23	0,2	1,0	1,2	3,6
0,2S	0,5	0,5S	0,9	
0,25	0,5	1,0	1,3	3,7
0,5S	0,2	0,5S	1,0	
0,55	0,2	1,0	1,4	
0,5S	0,5	0,5S	1,1	2,5
0,55	0,3	1,0	1,5	3,9
0,5	0,5	0,5S	1,1	3,4
<u> </u>	0,5	1,0	1,5	4,6
1,0	1,0	0,5S	2,0	6,0
1,0	1,0	1,0	2,2	6,7

T ()) (TITC	U	
I аолина ₹ - Мет	рологические хараі	ктепистики ИК	пеактивнои эпект	поэнепгии
I domina 5 Tyler	postor ir recitire Aupur	MI OPHOI HIM I III	peak inditon sheki	posmopinii

	Состав канала	Границы интервала	Границы интервала	
Трансформаторы тока, класс точности	Трансформаторы напряжения, класс точности	Счетчик электрической энергии, класс точности	основной относительной погрешности ИК для вероятности $0,95,$ $(\pm\delta),\%$	основной погрешности ИК, в рабочих условиях $(\pm\delta)$,%
-	-	1,0 2,0	1,1 2,2	4,0 7,1
0,2	0,2	1,0	1,5	4,3
0,2	0,5	1,0	2,0	4,4
0,28	0,2	2,0	2,7 1,5	7,3 4,1
0,2S	0,5	2,0 1,0	2,4 2,0	7,1 4,2
		2,0 1,0	2,7 2,4	7,2 4,6
0,5\$	0,2	2,0 1,0	3,1 2,7	7,4 4,6
0,5\$	0,5	2,0	3,3	7,4
0,5	0,5	1,0 2,0	2,7 3,3	5,9 8,3
1,0	1,0	1,0 2,0	5,1 5,5	9,5 11,1

Примечание к таблицам 2, 3:

Подпись и дата

Инв. № дубл.

Взам. ине. №

Подпись и дата

Инв. № подл.

					203.53-014-РЭ,МП
Изм.	Лист	№ докум.	Подп.	Дата	

Копировал Формат А4

Лист

6

2. Границы интервала основной погрешности ИК в рабочих условиях указаны для нормальных условий $\cos \varphi = 0.8$, $I_{\text{HoM}} = 0.05 \cdot I_{\text{HoM}}$.

- 3. Основные метрологические характеристики ИК активной и реактивной электроэнергии зависят от класса точности применяемых счетчиков электроэнергии, измерительных трансформаторов напряжения и тока, режимов работы вторичных цепей измерительных трансформаторов.
- 4. Погрешности ИК в рабочих условиях обусловлены дополнительными температурными погрешностями применяемых счетчиков электроэнергии и определяются их классами точности.

Таблица 3 - Основные метрологические характеристики ИК объема и расхода природного газа в рабочих условиях и приведенного к стандартным условиям, тепловой энергии, количества (массы и/или объема) теплоносителя в рабочих условиях.

Значение

Наименование характеристики

ИК учета тепловой энергии, количества (массы и/или объема) теплоносителя

	тих учета тепловой эпертий, количества (массы илили объема) теп.					
	Диапазон измерения объемного расхода теплоносителя, м ³ /ч	от 0,05 до 10 ⁶				
	Диапазон измерения массового расхода теплоносителя, т/ч	от 0,05 до 10 ⁶				
	Диапазон измерения температуры теплоносителя, °C	от -50 до +600				
	Диапазон измерений избыточного давления, МПа, не более	30				
	Диапазон измерения разности температур, °С	от 1 до 150				
	Пределы допускаемой относительной погрешности измерения					
	количества теплоты, %,					
	По ГОСТ Р 51649-2014, ГОСТ Р ЕН 1434-1-2006					
	Класс 1	$\pm (2+4\Delta t_{\min}/\Delta t + 0.01G_{B}/G)$				
	Класс 2	$\pm (3+4\Delta t_{min}/\Delta t+0.02G_{B}/G)$				
	Класс 3	$\pm (4+4\Delta t_{\min}/\Delta t+0.05G_B/G)$				
	где Δt_{min} – наименьшая разность температур в подающем и питаю:	щем контуре;				
5	Δt – разность температур в подающем и питающем контуре;					
ויסטומכם מ סמווים	$G_{ m B},G$ - значение расхода теплоносителя и его наибольшее значен	ие в подающем				
3	трубопроводе.					
	Пределы допускаемой абсолютной погрешности измерения	±(0,6+0,004t)				
	температуры теплоносителя, °С					
	где t - температура теплоносителя.					
VIN6. IVE OYOU.	Пределы допускаемой относительной погрешности измерения	±2,0				
ž	массового (объемного) расхода					
114	теплоносителя, %					
	Пределы допускаемой относительной погрешности измерения	±2,0				
	давления теплоносителя, %					
5	ИК объема и расхода газа					
	Диаметр условного прохода трубопровода, мм	От 10 до 1300				
3	Диапазон измерений расхода газа, м ³ /ч	от 0,05 до 2·10 ⁷				
	Диапазон измерений объема газа, м ³	от 2⋅10 ⁻⁵ до 9⋅10 ¹¹				
	Диапазон измерений температуры газа, °С	от -50 до +200				
5	Диапазон измерений давления газа, МПа	от 0 до 12				
	Диапазон измерений разности давлений газа, кПа	от 0 до 1000				
Š	Пределы допускаемой погрешности:					
	расход и объем (относительная) газа, %	от ±1,0 до ±3,0				
	давление (приведенная к диапазону измерений) газа, %	±0,6				
-	разность давлений (приведенная к диапазону измерений) газа, %	±0,7				

Лист

№ докум.

Подп.

Дата

203.53-014-P9,MΠ

Наименование характеристики	Значение
1	2
температура (абсолютная) газа, °С	$\pm (0.25 + 0.002 \cdot \mathbf{t})$
Пределы допускаемой абсолютной погрешности часов сервера сбора данных, с/сут	±30

Погрешность измерительных каналов тепла, воды, газа не зависит от способов передачи измерительной информации, и определяется метрологическими характеристиками применяемых средств измерений.

Примечания.

- 1 В комплекте с первичными преобразователями расхода, температуры и давления, указанными в технической документации.
 - 2. Пределы относительной погрешности при измерении количества тепловой энергии и тепловой мощности зависят от разности температур теплоносителя, разности характеристик подобранных в пару преобразователей температуры (от 0,1 °C до 0,025 °C) и пределов относительной погрешности при измерении объема (массы) и среднего объемного (массового) расхода теплоносителя.
 - 3. Пределы относительной погрешности при измерении объема (массы) и среднего объемного (массового) расхода теплоносителя зависят от диапазона расхода теплоносителя.
- 4. На верхний уровень систем передаются измеренные и вычисленные теплосчетчиками значения давления ,температуры, расхода, массы , тепловой энергии.

Таблица 5 - Основные характеристики систем

Подпись и дата

№ дубл.

ИНВ

UHB. No

Взам.

Подпись и дата

ИНВ. Nº ПООЛ.

№	Характеристика	Значение
1	Параметры питающей сети переменного тока:	
	Напряжение, В	220±15%
	Частота, Гц	50±1 Гц
2	Потребляемая мощность, ВА/Вт	В соответствии с документацией на составные части
3	Диапазон измерения расхода/потребления энергоресурса: кВт*ч; МВт*ч; квар*ч; Мвар*ч; л*ч: м³*ч; Гкал*ч	0999999999
4	Диапазон измерения электрической мощности: кВт; квар; МВт; Мвар	09999999999
5	Диапазон измерения объема и массы газообразных, жидких и твердых веществ: π ; m^3 ; κ г; τ .	09999999999
6	Условия эксплуатации	-20 до +50°C для
	Температура, °С	электронных блоков.
		-40 до +50°C по отдельному заказу.
	Влажность, %	До 90% при температуре 25°C
7	Срок службы не менее, лет	20
8	Предел допускаемой абсолютной погрешности по времени, секунд в сутки	± 30
9	Интервал задания границ тарифных зон, минут	15
10	Наработка на отказ, часов, не менее	50000
11	Устойчивость к воздействию внешних факторов (температуры, влажности, атмосферного давления) составных частей системы.	Согласно эксплуатационной документации на эти приборы (составные части).
12	Пределы допускаемой относительной погрешности по любому измеряемому энергоресурсу с учетом или без учета тарифных зон	Устанавливается в соответствии с

Изм. Лист № докум. Подп. Дата

203.53-014-РЭ,МП

Подпись и дата	
Инв. № дубл.	
Взам. инв. №	
Подпись и дата	
Инв. № подл.	

	не зависят от способов передачи измерительной информации в цифровом виде и определяются классами точности применяемых счетчиков энергоресурсов, измерительных трансформаторов и преобразователей количества импульсов в поименованную величину.	ГОСТ 8.401-80, раздел 2
13	Пределы допускаемых дополнительных погрешностей от влияния внешних факторов по любому измеряемому энергоресурсу с учетом или без учета тарифных зон не зависят от способов передачи измерительной информации в цифровом виде и определяются классами точности применяемых счетчиков энергоресурсов, измерительных трансформаторов и преобразователей количества импульсов в поименованную величину.	Устанавливается в соответствии с ГОСТ 8.401-80, раздел 2
14	Предел допускаемой дополнительной абсолютной погрешности по любому энергоресурсу получаемой за счет математической обработки с учетом или без учета тарифных зон не зависят от способов передачи измерительной информации в цифровом виде и определяются классами точности применяемых счетчиков энергоресурсов, измерительных трансформаторов и преобразователей количества импульсов в поименованную величину	Устанавливается в соответствии с ГОСТ 8.401-80, раздел 2
15	Глубина хранения собранной информации о потреблении/выработки энергоресурса, лет, не менее	3,5

3. Автоматизируемые функции

Для целей контроля и технического учета система автоматизирует следующие функции:

- Измерение учетных показателей для целей контроля и технического учета по всем точкам учета с указанным периодом усреднения;
- Периодический и/или по запросу автоматический сбор привязанных к единому календарному времени данных о приращении энергоресурса с заданной дискретностью учета;
- Хранение данных об измеренных величинах в стандартной базе данных в течение минимум 3,5 лет;
- Обеспечение ежесуточного резервирования баз данных на внешних носителях информации;
- Разграничение доступа к базам данных для разных групп пользователей и фиксация в отдельном электронном файле всех действий пользователей с базами данных;
- Предоставление контрольного доступа к результатам измерений, данным о состоянии объектов и средств измерений по запросу со стороны смежных организаций по установленным протоколам и регламентам;
- Обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне;
- Диагностику и мониторинг функционирования технических и программных средств АИИС УЭ;
- Конфигурирование и настройку параметров АИИС УЭ;
- Учет потерь электроэнергии от точки поставки до точки измерения;
- Осуществляют мониторинг режима потребления энергоресурса;
- Повышают достоверность, оперативность и точность учета, за счет современных учета и увеличения степени защиты оборудования и полученной информации от несанкционированного вмешательства.
- Обеспечивают привязку всех уровней системы к единому календарному времени с точностью не хуже ± 30 секунд в сутки.

ı					
I					
ĺ	Изм.	Лист	№ докум.	Подп.	Дата

203.53-014-P9.MΠ

Формат А4

Подпись и дата

№ дубл.

Инв.

୬

инв.

Взам.

Подпись и дата

1нв. № подл.

Системы учета энергоресурсов АИИС УЭ «ТОТЭМ» построена по двухуровневой схеме. Системы проектируются и компонуются для конкретных объектов.

4.1. Описание архитектуры

В двухуровневых системах верхний уровень (ИВК) включает в себя один или несколько компьютеров, объединенных в локальную сеть, с установленным программным обеспечением «ТОТЭМ». При необходимости формирования бумажных отчетных форм, к компьютерам могут быть подключены один или несколько принтеров.

В соответствии с регламентом опроса по каналам связи производится опрос приборов учета энергоресурсов нижнего уровня (ИИК). Нижний уровень системы включает приборы из таблицы 1 уровень ИИК. Для счетчиков электрической энергии: первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой код. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности,. На выходе счетчиков имеется измерительная информация со значениями следующих физических величин: активная и реактивная электрическая энергия, активная и реактивная мощность.

Теплосчетчики, включающие тепловычислитель, расходомеры и термодатчики, измеряют параметры теплоносителя, транспортируемого по трубопроводам, с последующим расчетом тепловой энергии и количества теплоносителя. Выходные электрические сигналы от датчиков параметров теплоносителя (расход, объем, температура, давление) поступают в тепловычислитель, где осуществляется их преобразование в значение соответствующих физических величин и производится вычисление тепловой энергии и количества теплоносителя.

Измерительные комплексы, включающие в себя датчики параметров потока газа (расход, давление температура), измеряют расход и объем природного газа при рабочих условиях и приводят результаты измерений к стандартным условиям. Выходные электрические сигналы датчиков параметров потока газа, установленных в трубопроводах, поступают в корректор, где осуществляется их преобразование в значения соответствующих физических величин и производится вычисление расхода и объема газа. Коэффициент сжимаемости газа вычисляется по модифицированному методу NX-19 мод. и модифицированному уравнению состояния GERG-91 мод.

Передача информации на верхний уровень может осуществляться как непосредственно с приборов учета по интерфейсам RS232/RS485/CAN, так и при помощи каналообразующего оборудования или преобразователя интерфейсов. Информация со счетчиков энергоресурсов поступает на сервер сбора данных через устройства передачи данных (модемы проводные, сотовые, интерфейсные радиомодули, сетевое оборудование для компьютерных сетей) в цифровом виде. Сервер сбора данных обеспечивает автоматический опрос приборов учета в соответствии с заданным расписанием, сохранение данных в базе данных, формирование отчетных форм, выгрузку данных в другие программы и системы.

Программные средства защиты уровня ИВК осуществляют проверку информации на целостность передаваемых данных. При обнаружении ошибки производится повторный запрос данных от соответствующего прибора учета.

I					
I					
	Изм.	Лист	№ докум.	Подп.	Дата

203.53-014-РЭ,МП

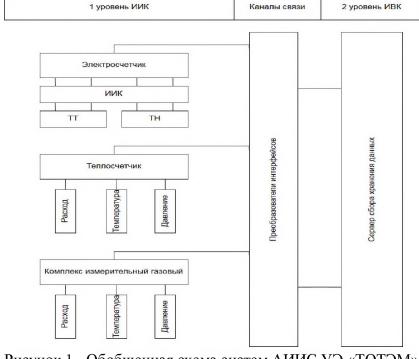


Рисунок 1 - Обобщенная схема систем АИИС УЭ «ТОТЭМ»

выполняют функцию генерации отчетов, расчета потребления/расхода энергоресурса, построение графиков по точкам учета и группам учета. Так же в системах предусмотрены средства для отображения и долговременного хранения собранной информации.

4.2. Работа со счётчиками энергоресурсов

Первичные устройства учёта энергоресурсов являются обязательными компонентами АИИС УЭ «ТОТЭМ». На уровне ИИК эти устройства осуществляют:

- преобразование конкретного вида энергоресурса в поименованную величину
- вычислительные функции учёта энергоресурса
- привязку измеренных/вычисленных данных к единому календарному времени
- передачу значения энергоресурса, преобразованного в поименованную величину, по выделенным каналам связи на Верхний уровень

4.3. Программное обеспечение

Подпись и дата

Nº ∂y6л

ИНВ.

S

UHB.

Взам.

Подпись и дата

№ подп.

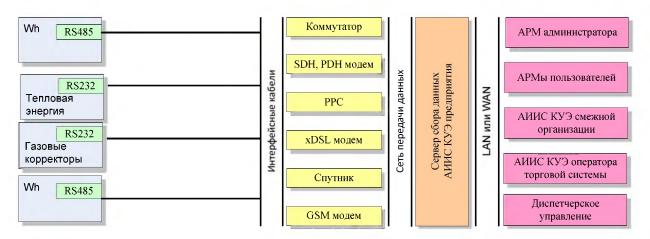
Работа с программным обеспечением, устанавливаемым на АРМ, описана в документах на программное обеспечение ТОТЭМ:

«ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ «ТОТЭМ» Руководство пользователя»

Программное обеспечение, входящее в состав систем выполняет следующие основные функции:

- поддержка и контроль каналов связи с объектами учёта и контроля;
- формирование сигналов синхронизации в подсистеме ведения единого времени;
- опрос первичных устройств учёта энергоресурсов с цифровым и импульсным выходами

	•	предоставлен подготовка с контроль потребления выдача дани энергоресуро	ние возм тчетов, в отреблен ; ных и сов и эне	ожнос протог ния з обмен	ебления ресурсов; сти просмотра инф колов, графиков денергоресурсов саналитической абжающими органелей о состоянии с	ия последу целью информа изациями	ующей печати; выявления цией между	; некорректного потребителями	
Изм.	Лист	№ докум.	Подп.	Дата	203.	53-014-F	РЭ,МП		Лист 11
•					Копировал		Формат А	14	•


За эксплуатационными документами на реализуемые проекты сохраняются децимальные номера, принятые для базовых документов с добавлением номера исполнения: AAAA.XXXX.XXX-XXX. Номер исполнения присваивается вновь реализуемому проекту.

4.4. Используемые каналы связи.

Системы АИИС УЭ «ТОТЭМ» в своей работе могут использовать следующие каналы связи (основной и/или резервный):

- оптоволоконные:
- выделенные линии:
- радиоканалы;
- телефонные проводные линии;
- GSM/GPRS каналы сотовой связи.

Использование каналов связи на всех уровнях системы

Применение того или иного типа канала связи определяется на этапе проектирования систем исходя из возможности получения на объекте доступа к желаемому каналу связи.

Наиболее предпочтительными и надежными являются цифровые каналы на базе оптоволоконных и/или выделенных линий. Наиболее легкодоступными являются GSM/GPRS каналы связи сотовых операторов.

В системах предусмотрена возможность постепенного ввода каналов в эксплуатацию. При построении систем объектов на начальных этапах (при отсутствии других каналов) для отладки можно пользоваться внешним GSM/GPRS модемом. При наличии в проекте ВОЛС на объекте основной и резервный канал могут быть организованы на базе 10/100 Ethernet портов.

5. Указание мер безопасности

Подпись и дата

№ дубл.

Инв.

Š

UHB.

Взам.

Подпись и дата

1нв. № подп.

По степени защиты от поражения электрическим током системы измерительные относятся к классу III по ГОСТ 12.2.007.0.-75(2001)

6. Подключение устройств, входящих в системы

6.1. Подключение кабелей информационных сетей зависит от выбранного протокола обмена. Подключение кабелей информационной сети RS485 (для примера).

В случае работы устройств в составе информационной сети по протоколу RS485, необходимо подать внешнее питание 7..20В постоянного тока. Это напряжение обеспечивает работу части схемы, отвечающую за прием и выдачу информации в соответствии со стандартом RS485.

Изм.	Лист	№ докум.	Подп.	Дата

203.53-014-РЭ.МП

12

Подпись и дата

Инв. № дубл.

Взам. ине.

୬

Подпись и дата

Инв. № подл.

Подключение кабелей информационной сети RS485, а также питания проводится в соответствии со схемами, приведенными в проектных документах на системы.

При прокладке линий информационной сети рекомендуется использовать кабель «витая пара» сечением $0.25-0.5~{\rm mm}^2$. В случае, когда длина кабеля между самыми удаленными приборами в сети превышает $1200{\rm m}$, а также когда число приборов сети превышает 128, используется ретранслятор 485/485. Ретранслятор включается в разрыв сети.

6.2. Подключение счетчиков энергоресурсов с цифровым выходом.

Подключение линий информационной сети к счетчикам энергоресурсов с цифровым выходом проводится в соответствии с эксплуатационной документацией на эти приборы и проектной документацией на систему.

6.3. Подключение устройств, обеспечивающих передачу данных из информационной сети систем в APM.

Подключение удаленного АРМ производится в соответствии с проектом и руководствами по эксплуатации используемых устройств.

7. Подготовка к использованию

7.1. Подготовка компонентов систем к установке на месте эксплуатации.

Перед установкой компонентов систем проверьте их комплектность в соответствии с паспортом или руководством по эксплуатации. Выполните внешний осмотр с целью выявления механических повреждений устройств. Если устройства находились в условиях, отличных от условий эксплуатации, то перед вводом в эксплуатацию необходимо выдержать их в указанных условиях не менее 2 ч.

7.2. Размещение

При выборе места и способов установки устройств, следует руководствоваться критериями, оговоренными в паспортах или руководствах по эксплуатации на устройства.

7.3. Подготовка к работе

Перед началом работы убедитесь в соответствии подключения внешних устройств, требованиям п. 6.

Перед началом эксплуатации рекомендуется убедиться в работоспособности первичных устройств учёта. При наличии ошибок необходимо принять меры к их устранению.

8. Техническое обслуживание

Техническое обслуживание должно проводиться лицами, изучившими настоящее руководство по эксплуатации и эксплуатационную документацию на устройства системы. Периодическое обслуживание заключается в осмотре внешнего вида устройств, в снятии измерительной информации, в проверке линий связи со счетчиками энергоресурсов, в устранении причин, вызывающих ошибки в работе.

Осмотр рекомендуется проводить не реже 1 раза в год, при этом проверяется надежность крепления приборов на месте эксплуатации, состояние кабельных линий и сохранность пломб.

9. Методика поверки

Методика поверки распространяется на измерительные каналы системы «ТОТЭМ» и устанавливает методы и средства первичной, периодической и внеочередной поверки.

Поверке подлежит каждый ИК системы «ТОТЭМ», реализующий косвенный метод измерений электрической энергии. ИК подвергают поверке покомпонентным (поэлементным) способом с учетом положений раздела 8 ГОСТ Р 8.596.

Первичной поверке подлежат системы «ТОТЭМ» после проведения их опытной эксплуатации.

Изм.	Лист	№ докум.	Подп.	Дата

203.53-014-РЭ,МП

Периодической поверке подлежат системы «ТОТЭМ», находящиеся эксплуатации. По согласованию с пользователем системы «ТОТЭМ» допускается поверка только по фактически используемым ИК.

Интервал между поверками системы «ТОТЭМ»- 4 года. Измерительные компоненты подлежат поверке с периодичностью, установленной в нормативной документации на их поверку.

После ремонта системы «MCTOT» путем замены неработоспособного измерительного компонента на исправный компонент, поверенный в установленном порядке, а также после ремонта (замены) связующего или вспомогательного компонента, поверку системы «ТОТЭМ» не проводят, при этом в паспорте (формуляре) системы «ТОТЭМ» должна быть сделана соответствующая запись.

9.1 Операции поверки

При проведении поверки систем «ТОТЭМ» должны выполняться операции, указанные в таблице 6.

Таблица 6

Подпись и дата

№ дубл.

ИНВ.

S инв.

Baam.

Подпись и дата

Инв. № подл.

Науманарамуа	Номер пункта	Проведение операции при:		
Наименование	методики	первичной	периодической	
операции	поверки	поверке	поверке	
1. Поверка компонентов	9.6.1	да	да	
2. Внешний осмотр	9.6.2	да	да	
3. Опробование	9.6.3	да	да	
4. Проверка метрологических				
характеристик измерительных	9.6.4	да	да	
компонентов				
5. Проверка достоверности	9.6.5	да	па	
передачи измеренных значений	7.0.3	да	да	
6. Проверка точности установки	9.6.6	па	па	
времени	9.0.0	да	да	
7. Проверка соответствия	9.6.7	да	да	
программного обеспечения				
8. Оформление результатов	9.7	да	да	
поверки				

9.2 Средства поверки

Таблица 7 – Средства поверки

•		
Наименование		Используемые
оборудования	Требуемые параметры	типы (марки)
ооорудования		оборудования
Топморивромовр	Диапазон измерений относительной	Прибор
Термогигрометр	влажности воздуха от 15 до 95 %, диапазон	комбинированный
	измерений температуры воздуха от 0 до 50 °C	Testo-610
	Диапазон измерений давления	«БАММ-1»
Барометр-анероид	(80 - 106) кПа;	
	ПГ ±0,2 кПа	
Секундомер	TTT 2.5 a/avm	«Интеграл С-01»
электронный	$\Pi\Gamma$ ±2,5 c/cyT	_

Примечания:

- Применяемые при поверке средства измерений должны быть поверены.
- Допускается применение других средств измерений с метрологическими характеристиками не хуже указанных.

L								
								Лист
							203.53-014-РЭ,МП	14
	Изм.	Лист	№ докум.	Подп.	Дата	7		14
						Копировал	Формат А4	

9.3 Требования безопасности

К проведению испытаний допускаются лица, изучившие эксплуатационную документацию на систему, средства их поверки и настоящую программу, имеющие опыт поверки средств измерений расхода и объёма жидкости, а также прошедшие инструктаж по технике безопасности в установленном порядке.

При проведении испытаний необходимо соблюдать требования раздела «Требования безопасности» технических условий и других нормативных документов на средства измерений и испытательное оборудование.

9.4 Условия проведения поверки

При проведении поверки систем «ТОТЭМ» должны быть соблюдены следующие условия:

- относительная влажность окружающего воздуха от 30 до 80 %;
- атмосферное давление от 86,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);
- напряжение питания от 187 до 242 В;
- частота сети питания от 49 до 51 Гц.
- внешние электрические и магнитные поля (кроме Земного), влияющие на работу систем, отсутствуют.

9.5 Подготовка к проведению поверки

- 9.5.1 Уточняется состав поверяемых систем, количество измерительных каналов, количество и типы компонентов систем, и их соответствие паспорту (формуляру) на поверяемую систему (по представленной документации на компоненты).
- 9.5.2 Проводятся подготовительные работы, изложенные в документации на измерительные, связующие, вычислительные и вспомогательные компоненты систем.
- 9.5.3 Проводится проверка работоспособности программного обеспечения систем в соответствии с эксплуатационной документацией.

9.6 Проведение поверки

9.6.1 Поверка компонентов

Поверку и оформление ее результатов для измерительных компонентов (средств измерений) проводят в соответствии с требованиями нормативной технической документации на их поверку.

Компоненты, не прошедшие поверку, к применению в составе данного ИК не допускаются, при этом поверка других компонент данного ИК или компонент других ИК продолжается.

9.6.2 Внешний осмотр

При внешнем осмотре систем «ТОТЭМ» проверяется:

- комплектность системы на соответствие паспорту (формуляру);
- наличие пломб на измерительных компонентах;
- наличие свидетельств о поверке, и/или поверительных клейм у измерительных компонентов системы;
 - отсутствие внешних повреждений линий связи;
- отсутствие дефектов, препятствующих чтению надписей и маркировки компонентов системы, регистрации (фиксированию) показаний по дисплеям счётчиков энергоресурсов и монитору APM;
- отсутствие на компонентах системы трещин, сколов и других механических повреждений, влияющих на работоспособность компонентов системы;
 - отсутствие повреждений сетевых шнуров и герметичных вводов.

9.6.3 Опробование

При опробовании проверяется отображение измеряемых параметров на мониторе APM, работоспособность и управление системы в соответствии с требованиями руководства по эксплуатации.

Изм.	Лист	№ докум.	Подп.	Дата

203.53-014-РЭ,МП

⋛

инв.

Результаты проверки считаются положительными, если функционирование и управление систем осуществляется в соответствии с руководством по эксплуатации.

9.6.4 Проверка метрологических характеристик измерительных компонентов

В каждом измерительном канале систем проверяется измерительный компонент (тип и заводской номер прибора) на соответствие перечню, приведенному в паспорте (формуляре).

Проверяется наличие действующих свидетельств (или соответствующих записей в паспорте) о поверке на все измерительные компоненты, входящие в состав систем.

Результаты поверки считаются положительными, если:

- тип и заводской номер каждого измерительного компонента соответствуют паспорту (формуляру) на систему;
- каждый измерительный компонент имеет действующее свидетельство (или соответствующую запись в паспорте) о поверке, выданные метрологической службой, аккредитованной на право поверки данного типа средств измерений.

9.6.5 Проверка достоверности передачи измеренных значений

Проверка достоверности передачи измеренных значений проводится в следующей последовательности:

- выполнить запрос архивных (часовых или получасовых) параметров потребления энергоресурсов (тип и количество параметров приводится в паспорте) непосредственно с APM оператора;
- выполнить запрос архивных параметров потребления энергоресурсов (тип и количество параметров приводится в паспорте) непосредственно подключившись к прибору учета с помощью заводской программы для считывания настройки
- Результаты проверки считаются положительными, если значения параметров потребления, полученные непосредственно с прибора учета и в APM оператора различаются не более чем на 0,1%.

9.6.6 Проверка точности установки времени

Перед выполнением корректировки необходимо убедиться в точности внутренних часов компьютера, используя функцию точного времени сети Интернет.

Корректировка и проверка точности установки внутренних часов приборов учета энергоресурсов с цифровым выходом, проводится с использованием персонального компьютера и программного обеспечения, входящего в состав систем.

Результат проверки считают положительным, если время сервера корректируется и после коррекции разность показаний внутренних часов сервера не превышает ± 30 с/сут.

- 9.6.7 Для подтверждения соответствия ПО системы необходимо проверить:
- наименование ПО в окне «о программе»;
- контрольную сумму метрологически значимой части ПО в окне «о программе»;
- проверить средства защиты ΠO от преднамеренного и непреднамеренного изменения (наличие паролей доступа к ΠO).

ПО считается подтвержденным, если наименование программы и контрольная сумма метрологически значимой части ПО не противоречат приведенным в описании типа на систему.

9.7 Оформление результатов поверки

9.7.1 На основании положительных результатов по пунктам раздела 9 выписывают свидетельство о поверке системы в соответствии с Приказом Минпромторга от 02.07.2015 №1815. В приложении к свидетельству указывают перечень ИК. Знак поверки наносится на свидетельство о поверке путем нанесения оттиска поверительного клейма с указанием года поверки и наклейки.

Изм.	Лист	№ докум.	Подп.	Дата

203.53-014-P9,MΠ

	дальн Прика	9.7.2 При отрицательн нейшей эксплуатации и и азом Минпромторга от 0	на нее выдают из	ввещение о неприг	УЭ признается негодной годности в соответствии ин.	
		Согласована:				
		Зам. начальника отдела	а 201 ФГУП «ВН	ИИМС»	Ю.А. Шатохина	
		Ведущий инженер отде	ела 201 Ф ГУП «Е	НИИМС»	Е.И. Кириллова	
дата						
Подпись и дата						
Ποὂ						
дубл.						
Инв. № дубл.						
οŅ						
Взам. ине.						
Подпись и дата						
одпись						
Инв. № подл.			<u> </u>			Лист
Инв. Л	Изм. Лист	№ докум. Подп. Д	lama	203.53-014-P9,I	МП	17
	•		Копировал		Формат А4	

10. Маркировка

- 10.1. Местом маркировки систем является Руководство по эксплуатации на систему (объединено с Паспортом). Требования к маркировке по ГОСТ 21552-84.
 - 10.1.1. Маркировка систем должна содержать:
- знак утверждения типа средств измерений (титульный лист РЭ, типографским способом);
 - наименование и товарный знак предприятия-изготовителя (титульный лист РЭ);
 - шифр или условное обозначение и вариант исполнения (титульный лист РЭ);
 - заводской номер по системе нумерации предприятия-изготовителя;
 - оттиск поверительного клейма (на свидетельстве о поверке);
 - дата изготовления.

Дата поверки и оттиск поверительного клейма должны быть указаны в Свидетельстве о поверке.

10.1.2. Требования к транспортной маркировке, в соответствии с требованиями нормативной документации на компоненты систем.

11. Правила хранения и транспортирования

Устройства, входящие в состав систем, в упаковке предприятия-изготовителя транспортируют любым видом транспорта в крытых транспортных средствах на любые расстояния. Во время транспортирования и погрузочно-разгрузочных работ транспортная тара не должна подвергаться резким ударам и прямому воздействию атмосферных осадков и пыли.

Предельные условия транспортирования и погрузочно-разгрузочных работ:

- температура окружающего воздуха
- от минус 25°C до плюс 55°C
- относительная влажность воздуха не более

95%

• атмосферное давление не менее

61,33 кПа (460 мм рт.ст)

Хранение устройств в упаковке на складах изготовителя и потребителя должно быть не хуже чем установлено условиями «5» ГОСТ15150.

12. Свидетельство о приёмке

АИИС УЭ «ТОТЭМ» АААА.ХХХХХХХХХХ, зав. N
соответствует требованиям проектной и эксплуатационной
признана годной для эксплуатации.

документации]

Π	риёмку	произв	Ξл:

Дата выпуска

М.П.

Подпись и дата

№ дубл.

ИНВ

UHB. No

Взам.

Подпись и дата

1нв. Nº подл.

IVI .I I.

Изм.	Лист	№ докум.	Подп.	Дата

203.53-014-РЭ,МП