ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы автоматизированные информационно-измерительные учета энергоресурсов «ТОТЭМ» (АИИС УЭ «ТОТЭМ»)

Назначение средства измерений

Системы автоматизированные информационно-измерительные учета энергоресурсов «ТОТЭМ» (АИИС УЭ «ТОТЭМ») (далее – АИИС УЭ «ТОТЭМ») предназначены для измерения электрической энергии, тепловой энергии и количества теплоносителя, расхода и объема газа; а также для автоматического сбора, накопления, обработки, хранения, отображения и передачи информации о потреблении энергоресурсов в диспетчерские и расчетные центры, в системы верхнего уровня.

Описание средства измерений

Системы автоматизированные информационно-измерительные учета энергоресурсов «ТОТЭМ» (АИИС УЭ «ТОТЭМ») обеспечивают измерение, регистрацию и передачу на верхний уровень измерительной информации; осуществляют ведение базы данных на АРМ с возможностью печати отчетов, протоколов; контроль линий связи со счетчиками энергоресурсов; защиту информации о потреблении энергоресурсов от несанкционированного доступа и применяются на объектах промышленного назначения и ЖКХ, в том числе при учетно-расчетных операциях.

АИИС УЭ «ТОТЭМ» относятся к проектно-компонуемым изделиям, виды и количество измерительных каналов (ИК) определяется конкретным проектом.

В качестве компонентов первого (нижнего) уровня используются средства измерений приведенные в таблице 1.

Таблица 1

Наименование	Регистрационный номер в
	Федеральном информационном
	фонде (рег.№)
1	2
Счетчики ватт-часов активной энергии переменного тока	24410-07
статические Меркурий 200	
Счетчики электрической энергии статические	55299-13
однофазные Меркурий 203.2Т	
Счетчики электрической энергии статические	46746-11
однофазные Меркурий 206	
Счетчики электрической энергии трехфазные статические	23345-07
Меркурий 230	
Счетчики электрической энергии статические трехфазные	48266-11
Меркурий 234	
Счетчики электрической энергии статические МАЯК 101АТ	52794-13
Счетчики электрической энергии трехфазные статические	57639-14
МАЯК Т301АРТ	
Комплексы измерительные ЛОГИКА 7761	60936-15
Комплексы измерительные ЛОГИКА 6761	51002-12
Комплексы измерительные ЛОГИКА 6762	55780-13
Комплексы измерительные ЛОГИКА 7742	51001-12

Продолжение таблицы 1

1	2
Теплосчетчики ЛОГИКА 8941	43409-15
Теплосчетчики ЛОГИКА 8943	43505-15
Теплосчетчики ЛОГИКА 6961	54511-13
Теплосчетчики ЛОГИКА 6962	65010-16
Теплосчетчики-регистраторы ВЗЛЕТ ТСР-М	27011-13
Теплосчетчики Т34	48334-11
Теплосчетчики ТСК5	20196-11
Теплосчетчики ТСК71	53289-13
Теплосчетчики КМ-5	18361-10
Теплосчетчики КМ-9	38254-08
Комплексы измерительные ЭЛЬФ и ЭЛЬФ-ТС, КАРАТ-307	46059-11
и КАРАТ-307-ТС	
Теплосчетчики СТУ-1	26532-09
Теплосчетчики ТС.ТМК-Н	21288-14
Теплосчетчики СКМ-2	47039-11
Теплосчетчики многоканальный ТМ-3Э	48235-11

Верхний уровень (ИВК) включает в себя один или несколько компьютеров, объединенных в локальную сеть, с установленным программным обеспечением «ТОТЭМ», каналообразующее оборудование или преобразователи интерфейсов.

Приборы учета устанавливаются на объекте в согласованных с энергосбытовыми организациями местах в установленном порядке. Все приборы учета соединяются информационной сетью с компьютеров уровня ИВК.

Для счетчиков электрической энергии: первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой код. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности. На выходе счетчиков имеется измерительная информация со значениями следующих физических величин: активная и реактивная электрическая энергия, активная и реактивная мощность.

Теплосчетчики, включающие тепловычислитель, расходомеры и термодатчики, измеряют параметры теплоносителя, транспортируемого по трубопроводам, с последующим расчетом тепловой энергии и количества теплоносителя. Выходные электрические сигналы от датчиков параметров теплоносителя (расход, объем, температура, давление) поступают в тепловычислитель, где осуществляется их преобразование в значение соответствующих физических величин и производится вычисление тепловой энергии и количества теплоносителя.

Измерительные комплексы, включающие в себя датчики параметров потока газа (расход, давление температура), измеряют расход и объем природного газа при рабочих условиях и приводят результаты измерений к стандартным условиям. Выходные электрические сигналы датчиков параметров потока газа, установленных в трубопроводах, поступают в корректор, где осуществляется их преобразование в значения соответствующих физических величин и производится вычисление расхода и объема газа. Коэффициент сжимаемости газа вычисляется по модифицированному методу NX-19 мод. и модифицированному уравнению состояния GERG-91 мод.

Передача информации на верхний уровень может осуществляться как непосредственно с приборов учета по интерфейсам RS232/RS485/CAN, так и при помощи каналообразующего оборудования или преобразователя интерфейсов. Информация со счетчиков энергоресурсов поступает на сервер сбора данных через устройства передачи данных (модемы проводные, сотовые, интерфейсные радиомодули, сетевое оборудование для компьютерных сетей) в цифровом виде. Сервер сбора данных обеспечивает автоматический опрос приборов учета в соответствии с заданным расписанием, сохранение данных в базе данных, формирование отчетных форм, выгрузку данных в другие программы и системы.

Программные средства защиты уровня ИВК осуществляют проверку информации на целостность передаваемых данных. При обнаружении ошибки производится повторный запрос данных от соответствующего прибора учета.

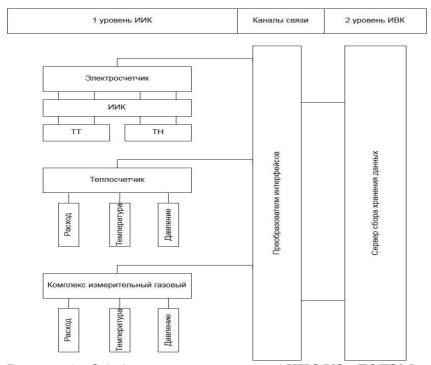


Рисунок 1 - Обобщенная схема систем АИИС УЭ «ТОТЭМ»

Системы АИИС КУЭ «ТОТЭМ» в своей работе могут использовать следующие каналы связи (основной и/или резервный):

- оптоволоконные:
- выделенные линии;
- телефонные проводные линии;
- · GSM/GPRS каналы сотовой связи.
- радиоканал

Для защиты систем от несанкционированных изменений (корректировок) предусмотрена аппаратная блокировка, пломбирование средств учета, кроссовых и клеммных коробок, использование запираемых шкафов, содержащих средства связи.

Программное обеспечение

Программное обеспечение (ПО) АИИС УЭ «ТОТЭМ» состоит из встроенного метрологически значимого ПО измерительных компонентов нижнего уровня системы, внесенных в Федеральный информационный фонд по обеспечению единства измерений и ПО верхнего уровня «ТОТЭМ».

В целях предотвращения несанкционированной настройки, случайных, непреднамеренных и преднамеренных вмешательств, приводящих к искажению результатов измерений, ПО «ТОТЭМ» относится к высокому уровню защиты ПО от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014 и имеет несколько степеней защиты:

- защита средствами ПО «ТОТЭМ»: для пользователей присвоен индивидуальный пароль (средства авторизации) и ограничения по выполнению вида операций, блокировки элементов меню управления, средства аутентификации пользователей и разграничение прав доступа к данным, использование грифов доступа, поддержка SSL, выполнение протоколирования и аудита действий пользователей.

ПО «ТОТЭМ» и база данных вместе с настройками, журналами событий размещена на отдельном физическом сервере, хранится в центрах обработки данных, которые наиболее полно соответствуют концепциям отказоустойчивости компьютерного оборудования, в котором используется кластеризация ЦПУ, массивы RAID DASD, особые требования к источникам бесперебойного питания и резервированные каналы передачи данных, обеспечивающие высокую надежность, эксплуатационную готовность и ремонтопригодность.

Таблица 2 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	totem.exe
Номер версии (идентификационный номер ПО)	не ниже версия 3.1ххххххх
Цифровой идентификатор ПО (по MD5)	2110491
Алгоритм вычисления цифрового идентификатора	CRC32

Метрологические и технические характеристики

Таблица 3 - Основные метрологические характеристики ИК объема и расхода природного газа в рабочих условиях и приведенного к стандартным условиям, тепловой энергии, количества (массы и/или объема) теплоносителя в рабочих условиях.

Изучество по при	2		
Наименование характеристики	Значение		
1	2		
ИК учета тепловой энергии, количества (массы и/или объема) тепл	поносителя		
Диапазон измерения объемного расхода теплоносителя, м ³ /ч	от 0,05 до 10 ⁶		
Диапазон измерения массового расхода теплоносителя, т/ч	от 0,05 до 10 ⁶		
Диапазон измерения температуры теплоносителя, °С	от -50 до +600		
Диапазон измерений избыточного давления, МПа, не более	30		
Диапазон измерения разности температур, °С	от 1 до 150		
Пределы допускаемой относительной погрешности измерения			
количества теплоты, %,			
По ГОСТ Р 51649-2014, ГОСТ Р ЕН 1434-1-2006			
Класс 1	$\pm (2+4\Delta t_{min}/\Delta t+0.01G_B/G)$		
Класс 2	$\pm (3+4\Delta t_{min}/\Delta t+0.02G_B/G)$		
Класс 3	$\pm (4+4\Delta t_{min}/\Delta t + 0.05G_B/G)$		
где Δt_{min} – наименьшая разность температур в подающем и питаю	щем контуре;		
Δt – разность температур в подающем и питающем контуре;			
G _B , G - значение расхода теплоносителя и его наибольшее значение в подающем			
трубопроводе.			
Пределы допускаемой абсолютной погрешности измерения	$\pm (0,6+0,004t)$		
температуры теплоносителя, °С			
где t - температура теплоносителя.			

Продолжение таблицы 3

1	2
Пределы допускаемой относительной погрешности измерения	±2,0
массового (объемного) расхода	
теплоносителя, %	
Пределы допускаемой относительной погрешности измерения	±2,0
давления теплоносителя, %	
ИК объема и расхода газа	
Диаметр условного прохода трубопровода, мм	От 10 до 1300
Диапазон измерений расхода газа, м ³ /ч	от 0.05 до 2×10^7
Диапазон измерений объема газа, м ³	от 2×10 ⁻⁵ до 9×10 ¹¹
Диапазон измерений температуры газа, °С	от -50 до +200
Диапазон измерений давления газа, МПа	от 0 до 12
Диапазон измерений разности давлений газа, кПа	от 0 до 1000
Пределы допускаемой погрешности:	
расход и объем (относительная) газа, %	от ±1,0 до ±3,0
давление (приведенная к диапазону измерений) газа, %	±0,6
разность давлений (приведенная к диапазону измерений) газа, %	±0,7
температура (абсолютная) газа, °С	$\pm(0.25 + 0.002)$
Пределы допускаемой абсолютной погрешности часов сервера сбора данных, с/сут	±30

Таблица 4 - Метрологические характеристики ИК активной электроэнергии

	Состав канала		Границы интервала	Границы
Трансфор- маторы тока, класс точности	Трансформаторы напряжения, класс точности	Счетчик электрической энергии, класс точности	основной относительной погрешности ИК для вероятности 0.95 , $(\pm\delta)$,%	интервала погрешности, в рабочих условиях (±δ),%
_	_	0,5S	0,6	1,9
_	_	1,0	1,1	3,6
0,2	0,2	0,5S	0,7	2,3
0,2	0,2	1,0	1,2	3,8
0,2	0,5	0,5S	0,9	2,3
0,2	0,5	1,0	1,3	3,8
0,28	0,2	0,5S	0,7	2,0
0,23	0,2	1,0	1,2	3,6
0,28	0,5	0,5S	0,9	2,1
0,23	0,3	1,0	1,3	3,7
0,5S	0,2	0,5S	1,0	2,4
0,55	0,2	1,0	1,4	3,8
0,5S	0,5	0,5S	1,1	2,5
0,55	0,3	1,0	1,5	3,9
0,5	0,5	0,5S	1,1	3,4
0,5	0,3	1,0	1,5	4,6
1.0	1.0	0,5S	2,0	6,0
1,0	1,0	1,0	2,2	6,7

Таблица 5 - Метрологические характеристики ИК реактивной электроэнергии

таолица з туге	<u> </u>	akrephennin mi	Биль Строн С	•
	Состав канала		Границы интервала	Границы
		Сиотини	основной	интервала
Трансформаторы	Трансформаторы	Счетчик	относительной	погрешности ИК,
тока, класс	напряжения, класс	электрической	погрешности ИК для	в рабочих
точности	точности	энергии, класс точности	вероятности 0,95,	условиях (±δ),%
		точности	$(\pm\delta)$,%	
		1,0	1,1	4,0
_	-	2,0	2,2	7,1
0,2	0,2	1,0	1,5	4,3
0,2	0,2	2,0	2,4	7,2
0,2	0,5	1,0	2,0	4,4
0,2	0,3	2,0	2,7	7,3
0,2S	0,2	1,0	1,5	4,1
0,23	0,2	2,0	2,4	7,1
0,2S	0,5	1,0	2,0	4,2
0,23	0,3	2,0	2,7	7,2
0,5S	0,2	1,0	2,4	4,6
0,33	0,2	2,0	3,1	7,4
0,5S	0,5	1,0	2,7	4,6
0,55	0,3	2,0	3,3	7,4
0,5	0,5	1,0	2,7	5,9
0,5	0,3	2,0	3,3	8,3
1,0	1,0	1,0	5,1	9,5
1,0	1,0	2,0	5,5	11,1

Примечание к таблицам 4, 5:

- 1. Границы интервала основной относительной погрешности ИК указаны для нормальных условий $\cos \mathbf{j} = 0.9$ инд, $\mathbf{I}_{\text{ном}} = 1$.
- 2. Границы интервала основной погрешности ИК в рабочих условиях указаны для нормальных условий $\cos j = 0.8$, $I_{\text{ном}} = 0.05 \cdot I_{\text{ном}}$.
- 3. Основные метрологические характеристики ИК активной и реактивной электроэнергии зависят от класса точности применяемых счетчиков электроэнергии, измерительных трансформаторов напряжения и тока, режимов работы вторичных цепей измерительных трансформаторов.

Таблица 6 - Основные технические характеристики ИК

Наименование характеристики	Значение
Количество ИК	до 10 000
Нормальные условия:	
параметры сети:	
напряжение, % от Uном	от 98 до 102
сила тока, % от Іном	от 1 до 120
коэффициент мощности	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +20 до +25

Продолжение таблицы 6

Условия	эксплуатации:	
парамет	ры сети:	
_	напряжение, % от Ином	от 90 до 110
_	сила тока, % от Іном	от 1 до 120

Наименование характеристики	Значение
 коэффициент мощности, соѕф 	0,8
– частота, Гц	от 49,8 до 50,2
температура окружающей среды для трансформаторов тока и напряжения,	
°C	от -40 до +70
температура окружающей среды в месте расположения счетчиков	
электрической энергии, °C	от -10 до +50
температура окружающей среды в месте расположения теплосчетчиков и	
измерительных комплексов, °С	от -10 до +50
температура окружающей среды в месте расположения сервера, °С	от +15 до +35

Знак утверждения типа

наносится типографским способом на титульные листы эксплуатационных документов на системы автоматизированные информационно-измерительные учета энергоресурсов «ТОТЭМ».

Комплектность средств измерений

Конкретный состав АИИС УЭ «ТОТЭМ» определяется проектной и эксплуатационной документацией на нее из состава средств измерений указанных в таблице 1.

Таблица 7 – Комплектность систем АИИС УЭ «ТОТЭМ»

Комплектность	Обозначение	Количество, шт.
Каналы измерения активной и реактивной		По проектной и
электрической энергии:		эксплуатационной
Измерительные трансформаторы тока и напряжения;		документации
Счетчики активной и реактивной электроэнергии		
из состава средств измерений указанных в таблице 1;		
Каналы измерения количества теплоты, расхода,		
объёма и массы теплоносителя: теплосчетчики из		
состава средств измерений указанных в таблице 1.		
Каналы измерения расхода и объема природного газа из		
состава средств измерений указанных в таблице 1 и		
другие в комплекте с предусмотренной их технической		
документацией средствами измерений		
Модемы проводные, сотовые, интерфейсные		По проектной и
радиомодули, сетевое оборудование для компьютерных		эксплуатационной
сетей		документации
Сервер	«МЄТОТ» ОП	Состав определяется
		заказом потребителя
Методика поверки	Раздел 9 руковод-	
	ства по эксплуата-	
	ции 203.53-014-	
	РЭ.МП	
Формуляр на систему	203.53-014 ФО	1
Руководство по эксплуатации	203.53-014-РЭ.МП	1

Поверка

осуществляется по документу 203.53-014-РЭ.МП «Системы автоматизированные информационно-измерительные учета энергоресурсов «ТОТЭМ» (АИИС УЭ «ТОТЭМ»)». Руководство по эксплуатации», раздел 9, утвержденному ФГУП «ВНИИМС» «24» апреля 2018 г.

Основные средства поверки

- для счетчиков энергоресурсов, датчиков по их технической документации.
- для трансформаторов тока по ГОСТ 8.217-2003;
- для трансформаторов напряжения по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-11;

Перечень основного поверочного оборудования:

для вторичной части систем:

– радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (рег.№ 27008-04).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС УЭ «ТОТЭМ».

Сведения о методиках (методах) измерений

приведены в документе «Системы автоматизированные информационно-измерительные учета энергоресурсов «ТОТЭМ» (АИИС УЭ «ТОТЭМ»)». Руководство по эксплуатации» 203.53-014-РЭ.МП.

Нормативные и технические документы, устанавливающие требования к системам автоматизированным информационно-измерительным учета энергоресурсов «ТОТЭМ» (АИИС УЭ «ТОТЭМ»)

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

ТУ 55.3658556.501390-11 13 Системы автоматизированные информационноизмерительные учета энергоресурсов «ТОТЭМ» (АИИС УЭ «ТОТЭМ»)

Изготовитель

Акционерное общество «Комплектэнергоучет» (АО «Комплектэнергоучет»)

ИНН 780 538 562 0

Адрес: 190020, г. Санкт-Петербург, Наб. Обводного канала, д.150, корп.7, пом. 128.04

Телефон: (812) 325-36-37, 325-36-38

Факс: (812) 325-37-39 E-mail: komplekt@tem.spb.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, 46

Телефон: (495) 437 55 77 Факс: (495) 437 56 66 Web-сайт: <u>www.vniims.ru</u> E-mail: <u>office@vniims.ru</u>

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М.п.	« »	2018 г