ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная АСУТП товарно-сырьевого парка, наливной эстакады нафты и вакуумного газойля комплекса глубокой переработки тяжелых остатков ОАО «ТАИФ-НК»

Назначение средства измерений

Система измерительная АСУТП товарно-сырьевого парка, наливной эстакады нафты и вакуумного газойля комплекса глубокой переработки тяжелых остатков ОАО «ТАИФ-НК» (далее - ИС) предназначена для измерений параметров технологического процесса в реальном масштабе времени (температуры, давления, перепада давления, уровня, массового расхода, концентрации, нижнего концентрационного предела распространения пламени (далее - НКПР)), формирования сигналов управления и регулирования.

Описание средства измерений

Принцип действия ИС основан на непрерывном измерении, преобразовании и обработке при помощи комплекса измерительно-вычислительного CENTUM модели VP (регистрационный номер в Федеральном информационном фонде (далее - регистрационный номер) 21532-14) (далее - CENTUM) и комплекса измерительно-вычислительного и управляющего противоаварийной защиты и технологической безопасности ProSafe-RS (регистрационный номер 31026-11) (далее - ProSafe-RS) входных сигналов, поступающих по измерительным каналам (далее - ИК) от первичных и промежуточных измерительных преобразователей (далее - ИП).

ИС осуществляет измерение параметров технологического процесса следующим образом:

- первичные ИП преобразуют текущие значения параметров технологического процесса в аналоговые унифицированные электрические сигналы силы постоянного тока от 4 до 20 мА, сигналы термопреобразователей сопротивления и термопар;
- аналоговые унифицированные электрические сигналы силы постоянного тока (от 4 до 20 мА) от первичных ИП поступают на входы преобразователей измерительных серии Н (модель HiD2030) (регистрационный номер 40667-15) (далее HiD2030), преобразователей измерительных серии Н (модель HiC2025) (регистрационный номер 40667-15) (далее HiC2025) и далее на модули ввода аналоговых сигналов AAI141 CENTUM VP (далее AAI141), AAI143 CENTUM VP (далее AAI143) и SAI143 ProSafe-RS (далее SAI143) (часть сигналов поступает на модули ввода аналоговых сигналов без барьеров искрозащиты);
- сигналы термопреобразователей сопротивления и термопар поступают на входы преобразователей измерительных серии Н (модель HiD2082) (регистрационный номер 40667-15) (далее HiD2082) и преобразователей измерительных для термопар и термопреобразователей сопротивления с гальванической развязкой (барьеров искрозащиты) серии К (модуль KFD2-UT2-EX1) (регистрационный номер 22149-14) (далее KFD2-UT2-EX1) и далее на AAI143 и SAI143;
- сигналы управления и регулирования (аналоговые сигналы силы постоянного тока от 4 до 20 мА) генерируются модулями вывода AAI543 CENTUM VP (далее AAI543) через преобразователи измерительные серии H (модель HiD2038Y) (регистрационный номер 40667-15) (далее HiD2038Y) или без них.

Цифровые коды, преобразованные посредством модулей ввода аналоговых сигналов в значения физических параметров технологического процесса, отображаются на мнемосхемах мониторов операторских станций управления в виде числовых значений, гистограмм, трендов, текстов, рисунков и цветовой окраски элементов мнемосхем, а также интегрируется в базу данных ИС.

По функциональным признакам ИС делится на две независимые подсистемы: распределенная система управления технологическим процессом и система противоаварийной защиты.

Состав средств измерений, входящих в состав первичных ИП ИК, указан в таблице 1.

Таблица 1 - Состав ИК ИС

Наименование ИК	Наименование первичного ИП ИК	Регистрационный номер
	Преобразователь термоэлектрический ТХК-2088 (далее - ТХК-2088)	12378-90
	Преобразователь термоэлектрический взрывозащищенный ТХК Метран-252 (далее - ТХК Метран-252)	21970-01
	Термопреобразователь сопротивления ТСПв (далее - ТСПв)	22251-11
	Преобразователь температуры Метран-280, Метран-280-Ех модели Метран-286 (далее - Метран-286)	23410-13
	Термопреобразователь сопротивления с пленочным чувствительным элементом ТСП Метран-200 модели ТСП Метран-226 (далее - ТСП Метран-226)	26224-07
ИК	Преобразователь термоэлектрический кабельный КТХК (далее - КТХК)	36765-09
температуры	Термометр сопротивления платиновый ТСПТ модели ТСПТ 301 (далее - ТСПТ 301)	36766-09
	Датчик температуры ТСПТ Ex (далее - TСПТ Ex)	57176-14
	Термопреобразователь сопротивления платиновый серии TR, TST модели TR61 (далее - TR61)	49519-12
	Датчик температуры ТСПТ (далее - ТСПТ)	57175-14
	Преобразователь измерительный серии iTEMP ТМТ модели ТМТ182 (далее - ТМТ182)	57947-14
	Преобразователь измерительный модульный ИПМ 0399 модификации ИПМ 0399/М0-Н (далее - ИПМ 0399/М0-Н)	22676-12
	Термопреобразователь сопротивления взрывозащищенный ТСП-Ех, ТСМ-Ех модификации ТСП-106Exi (далее - ТСП-106Exi)	31888-11
	Преобразователь давления измерительный SITRANS P серии 7MF модификации DS III модели 7MF4033 (далее -7MF4033)	61003-15
ИК давления	Преобразователь давления измерительный Cerabar S PMC731 (далее - Cerabar S PMC731)	16780-97
	Преобразователь давления измерительный Cerabar M PMP51 (далее - Cerabar M PMP51)	41560-09

Продолжение таб.	лицы I	I
Наименование ИК	Наименование первичного ИП ИК	Регистрационный номер
	Преобразователь давления измерительный Cerabar M PMC51 (далее - Cerabar M PMC51)	41560-09
	Преобразователь давления измерительный EJA530A (далее - EJA530A)	14495-00
ИК давления	Преобразователь (датчик) давления измерительный ЕЈ* модели ЕЈА530A (далее - Yokogawa EJA530A)	59868-15
	Преобразователь (датчик) давления измерительный ЕЈ* модели ЕЈХ530A (далее - ЕЈХ530A)	59868-15
	Преобразователь давления измерительный FCX-AII (далее - FCX-AII)	53147-13
	FCX-AII	53147-13
ИК перепада	Преобразователь давления измерительный Deltabar S PMD230 (далее - Deltabar S PMD230)	16782-97
давления	Преобразователь давления измерительный Deltabar S PMD75 (далее - Deltabar S PMD75)	41560-09
	Уровнемер микроволновый Micropilot M модели Micropilot I 130 (далее - Micropilot I 130)	17672-05
	Уровнемер микроволновый Micropilot M, Micropilot S модели Micropilot M FMR 230 (далее - Micropilot M FMR 230)	17672-08
	Уровнемер микроволновый Micropilot M, Micropilot S модели Micropilot M FMR 240 (далее - Micropilot M FMR 240)	17672-08
ИК уровня	Уровнемер буйковый типа 12300 (далее - 12300)	19774-00
31	Уровнемер микроволновый контактный VEGAFLEX 8* модификации VEGAFLEX 81 (далее - VEGAFLEX 81)	53857-13
	Уровнемер микроволновый контактный VEGAFLEX модификации VEGAFLEX 81 (далее - BEГА VEGAFLEX 81)	61449-15
	Уровнемер 5400 исполнения 5402 (далее - 5402)	30247-11
	Уровнемер 3300 исполнения 3301 (далее - 3301)	25547-12
	Pасходомер массовый Promass 83 (далее - Promass 83)	50365-12
ИК массового	Расходомер массовый Promass 63 F (далее - Promass 63 F)	15201-01
расхода	Расходомер-счетчик ультразвуковой OPTISONIC 3400 исполнения OPTISONIC 3400 F (далее - OPTISONIC 3400 F)	57762-14
ИК массового	Расходомер-счетчик ультразвуковой Prosonic Flow исполнения 92F (далее - Prosonic Flow 92F)	29674-12
расхода	Pacxoдoмер-счетчик вихревой объемный YEWFLOW DY (далее - YEWFLOW DY)	17675-09
ИК концентрации	Датчик газа электрохимический Drager Polytron 2 (регистрационный номер 39018-08) (далее - Drager Polytron 2)	39018-08

Наименование	Наименование первичного ИП ИК	Регистрационный
ИК	паименование первичного инт инс	номер
	Сигнализатор СТМ-30-50 (далее - СТМ-30-50)	18334-07
	Газоанализатор углеводородных газов IR 2100 (далее - IR 2100)	20924-01
ИК НКПР	Датчик газоаналитический GTR 210 (далее - GTR 210)	57932-14
	Газоанализатор PrimaX IR (далее - PrimaX IR)	50721-12
	Датчик оптический инфракрасный Drager модели Polytron PIR 7000 исполнений 334 (далее - Polytron PIR 7000)	53981-13

ИС выполняет следующие функции:

- автоматизированное измерение, регистрация, обработка, контроль, хранение и индикация параметров технологического процесса;
- предупредительная и аварийная сигнализация при выходе параметров технологического процесса за установленные границы и при обнаружении неисправности в работе оборудования;
 - управление технологическим процессом в реальном масштабе времени;
 - противоаварийная защита оборудования установки;
- отображение технологической и системной информации на операторской станции управления;
 - накопление, регистрация и хранение поступающей информации;
 - самодиагностика;
 - автоматическое составление отчетов и рабочих (режимных) листов;
- защита системной информации от несанкционированного доступа программным средствам и изменения установленных параметров.

Программное обеспечение

Программное обеспечение (далее - ПО) ИС обеспечивает реализацию функций ИС.

Защита ПО ИС от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу осуществляется путем идентификации, защиты от несанкционированного доступа.

Идентификационные данные ПО ИС приведены в таблице 2.

Таблица 2 - Идентификационные данные ПО ИС

Иномируниоми то доми то (приомоми)	Значение			
Идентификационные данные (признаки)	CENTUM	ProSafe-RS		
Идентификационное наименование ПО	CENTUM VP	ProSafe-RS		
		Work-bench		
Номер версии (идентификационный номер) ПО	не ниже R5.04	не ниже R3.02		
Цифровой идентификатор ПО	-	•		
Алгоритм вычисления цифрового идентификатора ПО	-	-		

ПО ИС защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров путем введения логина и пароля, ведения доступного только для чтения журнала событий.

Уровень защиты ПО ИС «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Основные технические характеристики ИС представлены в таблице 3.

Таблица 3 - Основные технические характеристики ИС

таблица 3 Основные техни неекие характеристики не	•
Наименование характеристики	Значение
Количество входных ИК, не более	1520
Количество выходных ИК, не более	120
Параметры электрического питания:	
 напряжение переменного тока, В 	380^{+57}_{-76} ; 220^{+22}_{-33}
– частота переменного тока, Гц	50±1
Потребляемая мощность, кВ·А, не более	40
Габаритные размеры отдельных шкафов, мм, не более:	
– ширина	1200
– высота	2200
– глубина	800
Масса отдельных шкафов, кг, не более	400
Условия эксплуатации:	
а) температура окружающей среды, °С:	
 в месте установки вторичных ИП ИК 	от +15 до +25
 в местах установки первичных ИП ИК 	от -35 до +40
б) относительная влажность, %:	
– в месте установки вторичных ИП ИК	от 30 до 80,
-	без конденсации влаги
 в местах установки первичных ИП ИК 	не более 98,
	без конденсации влаги
в) атмосферное давление, кПа	от 84,0 до 106,7 кПа
1111	

Примечание - ИП, эксплуатация которых в указанных диапазонах температуры окружающей среды и относительной влажности не допускается, эксплуатируются при температуре окружающей среды и относительной влажности, указанных в технической документации на данные ИП.

Метрологические характеристики вторичной части ИК ИС приведены в таблице 4.

Таблица 4 - Метрологические характеристики вторичной части ИК ИС

		теристики вторичной части итх ис			
Тип барьера	Тип модуля	Пределы допускаемой основной погрешности			
искрозащиты	ввода/вывода	1 ,			
HiD2082		для вторичной части ИК, воспринимающих сигналы от термопар: $\Delta = \pm \sqrt{ \frac{0,25 \cdot t_{_{_{\mathit{H3M}}}}^2 + 1,25 \cdot \left(t_{_{\max}} - t_{_{\min}}\right)^2 + 0,5 \cdot t_{_{_{\mathit{H3M}}}} \cdot \left(t_{_{\max}} - t_{_{\min}}\right)}{10^6} + \frac{t_{_{_{\mathit{H3M}}}} + t_{_{\max}} - t_{_{\min}}}{10^3} + 1} }{ для вторичной части ИК, воспринимающих сигналы от термопреобразователей сопротивления: \Delta = \pm \sqrt{ \frac{0,25 \cdot t_{_{_{\mathit{H3M}}}}^2 + 1,25 \cdot \left(t_{_{\max}} - t_{_{\min}}\right)^2 + 0,5 \cdot t_{_{_{\mathit{H3M}}}} \cdot \left(t_{_{\max}} - t_{_{\min}}\right)}{10^6} + \frac{t_{_{_{\mathit{H3M}}}} + t_{_{\max}} - t_{_{\min}}}{10^4} + 0,01} $			
	AAI 141; AAI 143; SAI 143	$+\frac{100}{10^4} + 0.01$			
		для вторичной части ИК, воспринимающих сигналы от			
		термопар:			
KFD2-UT2-		$\Delta = \pm \sqrt{\frac{0,25 \cdot t_{_{\text{H3M}}}^2 + 2 \cdot \left(t_{_{\text{max}}} - t_{_{\text{min}}}\right)^2 + t_{_{\text{H3M}}} \cdot \left(t_{_{\text{max}}} - t_{_{\text{min}}}\right)}{10^6} + \frac{10^6}{10^3}} + \frac{1}{10^3}}, ^{\circ}C;$			
EX1		для вторичной части ИК, воспринимающих сигналы от			
		термопреобразователей сопротивления:			
		$\Delta = \pm \sqrt{\frac{0,36 \cdot t_{_{_{\mathit{H3M}}}}^2 + 2 \cdot \left(t_{_{\mathit{max}}} - t_{_{\mathit{min}}}\right)^2 + 1,2 \cdot t_{_{_{\mathit{H3M}}}} \cdot \left(t_{_{\mathit{max}}} - t_{_{\mathit{min}}}\right)}{10^6} + \frac{1,2 \cdot t_{_{_{\mathit{H3M}}}} + 2 \cdot \left(t_{_{\mathit{max}}} - t_{_{\mathit{min}}}\right)}{10^4} + 0,01}$			
HiD2030		γ: ±0,15 %			
HiC2025		γ: ±0,15 %			
-		γ: ±0,13 % γ: ±0,10 %			
HiD2038Y		γ: ±0,10 % γ: ±0,32 %			
-	AAI 543	γ: ±0,30 %			
		1. 0,00 / 0			

Примечание - Приняты следующие обозначения:

 Δ - абсолютная погрешность, в единицах измеряемой величины;

γ - приведенная погрешность, %;

 $t_{\text{изм}}$ - измеренное ИК значение температуры, °C; t_{max} - верхний предел диапазона измерений температуры ИК, °C; t_{min} - нижний предел диапазона измерений температуры ИК, °C.

Метрологические характеристики ИК ИС приведены в таблице 5.

Таблица 5 - Метрологические характеристики ИК ИС

	метрологические характеристики ИК ИС Метрологические характеристики измерительных компонентов ИК							
Метро	логические характерис	тики ИК		ические характеристики ичный ИП	Вторичный ИП			
Наименование ИК	Диапазоны измерений	Пределы допускаемой основной погрешности	Тип (выходной сигнал)	Пределы допускаемой основной погрешности	Тип барьера искро- защиты	Типа модуля ввода/вывода	Пределы допускаемой основной погрешности	
1	2	3	4	5	6	7	8	
	от -40 до +50 °C от -40 до +200 °C	Δ: ±3,00 °C Δ: ±3,08 °C	TXK-2088	Δ: ±2,5 °C (от -40 до +360 °C включ.);		AAI 141 или	Δ: ±1,08 °C Δ: ±1,25 °C	
	от -40 до +800 °С¹)	см. примечание 2	(HCX XK(L))	±(0,7+0,005·t) °C (св. +360 до +800 °C включ.)	HiD2082	AAI 143, или SAI 143	см. таблицу 4	
	от 0 до +100 °C	Δ: ±3,01 °C	ТХК Метран-252 (HCX XK(L))	Δ: ±2,5 °C (от -40 до			Δ: ±1,11 °C	
	от 0 до +150 °C	Δ: ±3,04 °C		+300 °С включ.);	HiD2082	AAI 141 или	Δ: ±1,16 °C	
	от -40 до +800 °С ¹⁾	см. примечание 2		±0,0075· t °C (св. +300 до +800 °C включ.)		AAI 143, или SAI 143	см. таблицу 4	
	от 0 до +100 °C	Δ: ±0,92 °C	ТСПв			AAI 141 или	Δ: ±0,23 °C	
ИК температуры	от -50 до +660 °С1)	см. примечание 2	(Pt 100)	Δ : ±(0,3+0,005· t) °C	HiD2082	AAI 143, или SAI 143	см. таблицу 4	
	от -50 до +200 °C	Δ: ±0,61 °C	Метран-286	∆: ±0,4 °С или	HiC2025	AAI 141 или		
	от -50 до +500 °С ²⁾	см. примечание 2	(от 4 до 20 мА)	γ: ±0,15 % (берут большее значение)	или HiD2030	AAI 143, или SAI 143	γ: ±0,15 %	
	от 0 до +120 °C	Δ: ±1,06 °C	ТСП Метран-226		KFD2-	AAI 141 или	Δ: ±0,32 °C	
	от -70 до +500 °С ¹⁾	см. примечание 2	(Pt 100)	Δ : ±(0,3+0,005· t) °C	UT2- EX1	AAI 143, или SAI 143	см. таблицу 2	
	от -40 до +50 °C	Δ: ±3,00 °C		Δ : ±2,5 °C (от -40 до			Δ: ±1,08 °C	
	от -40 до +100 °C	Δ: ±3,02 °C	КТХК	+360 °С включ.);		AAI 141 или	Δ: ±1,13 °C	
	от -40 до +150 °C	Δ: ±3,05 °C	(HCX XK(L))	±(0,7+0,005·t) °C	HiD2082	AAI 143,	Δ: ±1,19 °C	
	от -40 до +400 °C	Δ: ±4,00 °	(110212111(12))	(св. +360 до +600 °C		или SAI 143	Δ: ±1,49 °C	
	от -40 до +600 °С ¹⁾	см. примечание 2		включ.)			см. таблицу 4	

1	2	3	4	5	6	7	8
	от -40 до +50 °C от -40 до +100 °C от -40 до +150 °C от 0 до +150 °C от 0 до +200 °C от -40 до +600 °C ¹⁾ от -50 до +150 °C от -196 до +660 °C ¹⁾	∆: ±3,01 °C ∆: ±3,05 °C ∆: ±3,09 °C ∆: ±3,07 °C ∆: ±3,11 °C см. примечание 2 ∆: ±1,26 °C см. примечание 2	КТХК (HCX XK(L)) ТСПТ 301 (Pt 100)	Δ: ±2,5 °C (от -40 до +360 °C включ.); ±(0,7+0,005·t) °C (св. +360 до +600 °C включ.) Δ: ±(0,3+0,005· t) °C	KFD2- UT2- EX1 KFD2- UT2- EX1	AAI 141 или AAI 143, или SAI 143 AAI 141 или AAI 143, или SAI 143	Δ : ±1,12 °C Δ : ±1,20 °C Δ : ±1,28 °C Δ : ±1,24 °C Δ : ±1,32 °C см. таблицу 4 Δ : ±0,44 °C см. таблицу 4
ИК температуры	от -50 до +250 °C от -50 до +100 °C от 0 до +150 °C от 0 до +200 °C от 0 до +250 °C от 0 до +350 °C от -196 до +600 °C ¹⁾	∆: ±0,97 °C ∆: ±0,49 °C ∆: ±0,49 °C ∆: ±0,65 °C ∆: ±0,81 °C ∆: ±1,13 °C см. примечание 2	ТСПТ Ex (от 4 до 20 мА)	Δ : ±0,3 °C (для t_n : от 10 до 120 °C включ.); Δ : ±0,0025· t_n °C (для t_n : св. 120 до 800 °C включ.)	HiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от -50 до +120 °C от -40 до +150 °C от -40 до +250 °C от 0 до +150 °C от -200 до +600 °C ¹⁾	∆: ±0,56 °C ∆: ±0,63 °C ∆: ±0,90 °C ∆: ±0,60 °C	ТR61 (Pt 100); ТМТ182 (от 4 до 20 мА)	ТR61 Δ : $\pm (0,15+0,002\cdot t)$ °C; ТМТ182 Δ : $\pm 0,2$ °C или γ : $\pm 0,08$ % (берут большее значение)	НіС2025 или НіD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от -50 до +120 °C от -40 до +150 °C от -40 до +250 °C от 0 до +150 °C от -200 до +600 °C ¹⁾	Δ: ±0,93 °C Δ: ±1,00 °C Δ: ±1,30 °C Δ: ±0,93 °C см. примечание 2	ТR61 (Pt 100); ИПМ 0399/ М0-Н (от 4 до 20 мА)	TR61 Δ: $\pm (0,15+0,002 \cdot t)$ °C; ИПМ 0399/M0-H γ : $\pm (0,45/t_n \cdot 100+0,15)$ %	НіС2025 или НіD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %

Продолжение та	2	2	4			7	0
1		3	4	5	6	7	8
ИК	от -50 до +150 °C от -50 до +200 °C от -196 до +600 °C ¹⁾	∆: ±0,94 °C ∆: ±1,18 °C см. примечание 2	ТСПТ (от 4 до 20 мА)	Δ: ±0,5 °C (для t _n : от 10 до 125 °C включ.); Δ: ±0,004·t _n °C (для t _n : св. 125 до 800 °C включ.)	HiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
температуры	от -50 до +150 °C от -50 до +500 °C ¹⁾	∆: ±1,46 °C см. примечание 2	ТСП-106Exi (Pt 100); ИПМ 0399/М0-Н (от 4 до 20 мА)	ТR61 Δ : $\pm (0,3+0,005 \cdot t)$ °C; ИПМ 0399/М0-Н γ : $\pm (0,45/t_n \cdot 100+0,15)$ %	НіС2025 или НіD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от 0 до 0,4 Мпа; от 0 до 1,6 МПа ¹⁾	γ: от ±0,20 до ±0,63 %	7MF4033 (от 4 до 20 мА)	γ: ±(0,0029·κ+0,071) % πρυ κ≤10; γ: ±(0,0045·κ+0,071) % πρυ 10<κ≤30; γ: ±(0,005·κ+0,05) % πρυ 30<κ≤100	НіС2025 или НіD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
ИК давления	от 0 до 1000 кПа; от 0 до 0,04 МПа; от 0 до 0,60 МПа; от 0 до 1,00 МПа; от 0 до 1,60 МПа; от 0 до 2,50 МПа; от 0 до 10 кПа; от 0 до 600 кПа; от 0 до 1,569 МПа (шкала от 0 до 16 кгс/см²); от -0,1 до 6 МПа ¹⁾	γ: ±0,33 %	Cerabar S PMC731 (от 4 до 20 мА)	γ: ±0,25 %	HiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %

Продолжение та		2	4				0
1	2	3	4	5	6	7	8
	от -10 до 10 кПа; от 0 до 160 кПа; от 0 до 250 кПа; от 0 до 0,6 МПа; от 0 до 1,0 МПа; от 0 до 1,6 МПа; от 0 до 2,5 МПа; от -0,1 до 40 МПа ¹⁾	γ: ±0,24 %	Cerabar M PMP51 (от 4 до 20 мА)	γ: ±0,15 %	НiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от -10 до 10 кПа; от -0,1 до 4 МПа ¹⁾	γ: ±0,24 %	Cerabar M PMC51 (от 4 до 20 мА)	γ: ±0,15 %	HiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от 0 до 2,5 МПа; от 0 до 10 МПа ¹⁾	γ: от ±0,19 до ±0,69 %	ЕЈА530А (от 4 до 20 мА)	γ: от ±0,075 до ±0,600 %	HiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
ИК давления	от 0 до 1,4 МПа; от 0 до 2 МПа ¹⁾ ; от 0 до 10 МПа ¹⁾	γ: от ±0,19 до ±0,42 %	Yokogawa EJA530A (от 4 до 20 мА)	γ: от ±0,075 до ±0,35 %	HiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
ИК давления	от 0 до 0,589 МПа (шкала от 0 до 6 кгс/см²); от 0 до 3,923 МПа (шкала от 0 до 40 кгс/см²) от -0,1 до 3,50 МПа; от 0 до 0,16 МПа; от 0 до 0,40 МПа; от 0 до 0,60 МПа; от 0 до 1,00 МПа; от 0 до 2,00 МПа; от 0 до 2,50 МПа; от 0 до 10,00 МПа; от 0 до 10,00 МПа;	γ: от ±0,20 до ±0,69 %	ЕЈХ530А (от 4 до 20 мА)	γ: от ±0,1 до ±0,6 %	НiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %

1	2	3	4	5	6	7	8
ИК давления	от -25 до 400 кПа; от -0,1 до 3,0 МПа ¹⁾	γ: ±0,28 %	FCX-AII (от 4 до 20 мА)	γ: ±0,2 %	HiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
ИК перепада давления ²⁾	от 0 до 1,3 кПа; от -320 до 320 кПа ¹⁾	γ: ±0,28 %	FCX-AII (от 4 до 20 мА)	γ: ±0,2 %	HiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от 0 до 10 кПа; от 0 до 25 кПа; от 0 до 40 кПа; от 0 до 300 кПа; от 0 до 4 МПа ¹⁾	γ: ±0,28 %	Deltabar S PMD230 (от 4 до 20 мА)	γ: ±0,2 %	НiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от 0 до 50 кПа; от 0 до 100 кПа; от 0 до 300 кПа\$ от -0,5 до 4 МПа ¹⁾	γ: ±0,18 %	Deltabar S PMD75 (от 4 до 20 мА)	γ: ±0,075 %	НiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от 0 до 18000 мм от 0 до 35000 мм ¹⁾	Δ: ±31,68 мм см. примечание 2	Micropilot I 130 (от 4 до 20 мА)	Δ: ±10 мм	НiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
ИК уровня	от 0 до 17500 мм	Δ: ±30,90 мм в диапазоне измерений от 0 до 10000 мм включ; δ: ±0,31 % в диапазоне измерений св. 10000 до 17500 мм включ.	Micropilot M FMR 230 (от 4 до 20 мА)	Δ : ± 10 мм в диапазоне измерений от 0 до 10 м включ.; δ : $\pm 0,1$ % в диапазоне измерений св. 10 до 20 м включ.	НiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от 0 до 20000 мм ¹⁾	см. примечание 2					

1	2	3	4	5	6	7	8
	от 0 до 8000 мм от 0 до 40000 мм ¹⁾	Δ: ±13,61 мм см. примечание 2	Micropilot M FMR 240 (от 4 до 20 мА)	Δ : ± 3 мм в диапазоне измерений от 0 до 10 м включ.; δ : $\pm 0,03$ % в диапазоне измерений св. 10 до 20 м включ.	НіС2025 или НіD2030	ААІ 141 или ААІ 143, или SAI 143	γ: ±0,15 %
ИК уровня	от 0 до 813 мм; от 0 до 850 мм; от 0 до 1524 мм; от 0 до 1800 мм; от 0 до 1829 мм; от 0 до 2000 мм; от 0 до 2200 мм; от 0 до 2438 мм; от 0 до 3048 мм ¹⁾	γ: ±0,58 %	12300 (от 4 до 20 мА)	γ: ±0,5 %	НіС2025 или НіD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от 0 до 1829 мм	∆: ±16,78 мм в диапазоне измерений от 0 до 300 мм включ.; ∆: ±3,74 мм в диапазоне измерений св. 300 до 1829 мм включ.	VEGAFLEX 81 (от 4 до 20 мА)	Δ : ± 15 мм в диапазоне измерений от 0 до 0,3 м включ.; Δ : ± 2 мм в диапазоне измерений св. 0,3 м	НiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от 0 до 75000 мм ¹⁾	см. примечание 2					

Продолжение та	2	3	4	5	6	7	8
	от 500 до 2000 мм от 0 до 75000 мм ¹⁾	 ∆: ±16,69 мм в диапазоне измерений от 200 до 300 мм; ∆: ±3,32 мм в диапазоне измерений свыше 300 до 1700 мм см. примечание 2 	BEΓA VEGAFLEX 81 (от 4 до 20 мА)	Δ : ± 15 мм в диапазоне измерений от 0 до 0,3 м включ.; Δ : ± 2 мм в диапазоне измерений св. 0,3 м	HiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
ИК уровня	от 0 до 1500 мм	∆: ±16,69 мм в диапазоне измерений от 150 до 400 мм включ.; ∆: ±4,13 мм в диапазоне измерений св. 400 до 1500 мм включ.	5402	Δ: ±15 мм в диапазоне измерений от 150 до 400 мм	HiC2025	ААІ 141 или	
	от 0 до 2000 мм	Δ: ±16,83 мм в диапазоне измерений от 150 до 400 мм включ.; Δ: ±4,67 мм в диапазоне измерений св. 400 до 2000 мм включ.	5402 (от 4 до 20 мА)	включ.; Δ : ±3 мм в диапазоне измерений св. 400 мм	или HiD2030	AAI 143, или SAI 143	γ: ±0,15 %

1	2	3	4	5	6	7	8
	от 0 до 12000 мм	 ∆: ±25,78 мм в диапазоне измерений от 150 до 400 мм включ.; ∆: ±20,08 мм в диапазоне измерений св. 400 до 12000 мм включ. 	5402	Δ: ±15 мм в диапазоне измерений от 150 до 400 мм	HiC2025	ААІ 141 или	10.15.07
ИК уровня	от 0 до 18000 мм	Δ: ±33,98 мм в диапазоне измерений от 150 до 400 мм включ.; Δ: ±29,89 мм в диапазоне измерений св. 400 до 18000 мм включ.	(от 4 до 20 мА)	включ.; ∆: ±3 мм в диапазоне измерений св. 400 мм	или HiD2030	AAI 143, или SAI 143	γ: ±0,15 %
	от 0 до 30000 мм ¹⁾ от 100 до 4100 мм	см. примечание 2 Δ: ±17,78 мм в диапазоне		Δ: ±15 мм в	HiC2025	AAI 141 или	
	(шкала от 0 до 4000 мм)	измерений от 100 до 4000 мм	3301 (от 4 до 20 мА)	диапазоне измерений от 0,1 до 23,5 м	или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от 0,1 до 23500 мм ¹⁾	см. примечание 2					

1	2	3	4	5	6	7	8
	от 0 до 200000 кг/ч	см. примечание 2	Promass 83 (от 4 до 20 мА)	δ : ±(0,05 %+ +(Z_c /Q)·100 %) при массовом расходе меньше 175 т/ч; δ : ±0,05 % при массовом расходе больше 175 т/ч	НіС2025 или НіD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от 0 до 180 т/ч; от 0 до 350 т/ч	см. примечание 2	Promass 63 F (от 4 до 20 мА)	δ: ±(0,1 %+ +(Z _c /Q)·100 %)	НiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
ИК массового расхода	от 0 до 300000 кг/ч; от 0 до 500000 кг/ч	см. примечание 2	OPTISONIC 3400 F (от 4 до 20 мА)	δ: ±0,3 % при скорости потока от 1,0 до 20,0 м/с; δ: ±1,0 % при скорости потока от 0,25 до 0,5 м/с; δ: ±2,0 % при скорости потока от 0,125 до 0,25 м/с; δ: ±4,0 % при скорости потока от 0,06 до 0,125 м/с	НіС2025 или НіD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от 0 до 60000 кг/ч; от 0 до 88800 кг/ч; от 0 до 100000 кг/ч; от 0 до 100000 кг/ч; от 0 до 108000 кг/ч	см. примечание 2	Prosonic Flow 92F (от 4 до 20 мА)	δ: ±0,5 %	НіС2025 или НіD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %
	от 0 до 15000 кг/ч	см. примечание 2	YEWFLOW DY (от 4 до 20 мА)	δ: ±1,0 % при 40000≤Re<1000·D; δ: ±0,75 % при 1000·D ≤Re	НiC2025 или HiD2030	AAI 141 или AAI 143, или SAI 143	γ: ±0,15 %

1	2	3	4	5	6	7	8
ИК концентрации (объемная доля СО)	от 0 до 25,8 млн ⁻¹ (шкала от 0 до 30 мг/м ³)	γ: ±22,01 % в диапазоне измерений от 0 до 15 млн ⁻¹ включ.; δ: ±22,01 % в диапазоне измерений св. 15 до 25,8 млн ⁻¹ включ.	Drager Polytron 2 (от 4 до 20 мА)	γ: ±20 % в диапазоне измерений от 0 до 15 млн ⁻¹ включ.; δ: ±20 % в диапазоне измерений св. 15 до 50 млн ⁻¹ включ.	-	AAI 141 или AAI 143, или SAI 143	γ: ±0,10 %
	от 0 до 50 % НКПР	Δ: ±5,51 % НКПР	СТМ-30-50 (от 4 до 20 мА)	Δ: ±5 % НКПР	-	AAI 141 или AAI 143, или SAI 143	γ: ±0,10 %
ИК НКПР (СН ₄)	от 0 до 100 % НКПР	∆: ±3,31 % НКПР в диапазоне измерений от 0 до 50 % НКПР; ∆: ±5,51 % НКПР в диапазоне измерений свыше 50 до 100 % НКПР	IR 2100 (от 4 до 20 мА)	 ∆: ±3 % НКПР в диапазоне измерений от 0 до 50 % НКПР включ.; ∆: ±5 % НКПР в диапазоне измерений св.50 до 100 % НКПР 	-	AAI 141 или AAI 143, или SAI 143	γ: ±0,10 %
	от 0 до 100 % НКПР	Δ: ±5,51 % НКПР	GTR 210 (от 4 до 20 мА)	Δ: ±5 % НКПР	-	AAI 141 или AAI 143, или SAI 143	γ: ±0,10 %

1	2	3	4	5	6	7	8
ИК НКПР (С ₃ Н ₈)	от 0 до 100 % НКПР	Δ: ±5,51 % НКПР в диапазоне измерений от 0 до 50 % НКПР включ.; δ: ±11,01 % в диапазоне измерений св.50 до 100 % НКПР	PrimaX IR (от 4 до 20 мА)	Δ: ±5 % НКПР в диапазоне измерений от 0 до 50 % НКПР включ.; δ: ±10 % в диапазоне измерений св.50 до 100 % НКПР	-	AAI 141 или AAI 143, или SAI 143	γ: ±0,10 %
ИК НКПР (углеводороды от C_1 до C_{12})	от 0 до 100 % НКПР	Δ: ±5,51 % НКПР в диапазоне измерений от 0 до 50 % НКПР включ.; δ: ±11,01 % в диапазоне измерений св.50 до 100 % НКПР	Polytron PIR 7000 (от 4 до 20 мА)	Δ: ±5 % НКПР в диапазоне измерений от 0 до 50 % НКПР включ.; δ: ±10 % в диапазоне измерений св.50 до 100 % НКПР	-	AAI 141 или AAI 143, или SAI 143	γ: ±0,10 %
ИК силы тока	от 4 до 20 мА	γ: ±0,15 %	-	-	HiD2030 или HiC2025	AAI141 или AAI143, или SAI143	γ: ±0,15 %
ИК воспроизведе ния	от 0 до 100 %	γ: ±0,10 % γ: ±0,32 %		_	HiD2038 Y	AAI 543	γ: ±0,1 % γ: ±0,32 %
аналоговых сигналов от 4 до 20 мА	от 0 до 100 %	γ: ±0,3 %	-	_	-	AAI 543	γ: ±0,3 %

1	2	3	4	5	6	7	8
1) 🕶			TITL D. V				

¹⁾ Указан максимальный верхний предел измерений первичного ИП. Верхний предел измерений может быть настроен на другое меньшее значение в соответствии с эксплуатационной документацией на первичный ИП.

²⁾ Шкала ИК, применяемых для измерения расхода на сужающих устройствах методом переменного перепада давления, установлена в ИС в единицах измерения расхода. Пределы допускаемой основной погрешности данных ИК нормированы по перепаду давления.

Примечания

1. Приняты следующие обозначения:

 Δ - абсолютная погрешность, в единицах измеряемой величины;

 δ - относительная погрешность, %;

γ - приведенная погрешность, %;

t - измеренная температура, °С;

t_N - настроенный диапазон измерений температуры, °С;

к -отношение максимального и настроенного диапазонов измерений;

 Z_c - стабильность нулевой точки, кг/ч;

Q - текущее значение расхода, кг/ч;

Re - число Рейнольдса;

D - диаметр условного прохода, мм.

2. Пределы допускаемой основной погрешности ИК рассчитывают по формулам:

– приведенная $\gamma_{\mu\kappa}$, %:

$$\gamma_{\text{MK}} = \pm 1, 1 \cdot \sqrt{\gamma_{\text{\Pi\Pi}}^2 + \gamma_{\text{B\Pi}}^2},$$

где $\gamma_{\text{пп}}$ пределы допускаемой основной приведенной погрешности первичного ИП ИК, %;

 $\gamma_{\mbox{\tiny BII}}$ - пределы допускаемой основной приведенной погрешности вторичной части ИК, %;

	1	2	3	4	5	6	7	8

$$\Delta_{\text{HK}} = \pm 1.1 \cdot \sqrt{\Delta_{\text{IIII}}^2 + \left(\gamma_{\text{BII}} \cdot \frac{X_{\text{max}} - X_{\text{min}}}{100}\right)^2},$$

где Δ_{m} пределы допускаемой основной абсолютной погрешности первичного ИП ИК, в единицах измерений измеряемой величины;

γ_{вп} - пределы допускаемой основной приведенной погрешности вторичной части ИК, %;

Значение измеряемого параметра, соответствующее максимальному значению диапазона аналогового сигнала, в единицах измерений измеряемой величины;

х_{тіп} - значение измеряемого параметра, соответствующее минимальному значению границы диапазона аналогового сигнала, в единицах измерений измеряемой величины;

– относительная δ_{uk} , %:

$$\delta_{\rm HK} = \pm 1, 1 \cdot \sqrt{\delta_{\rm IIII}^{\ \ 2} + \left(\gamma_{\rm BII} \cdot \frac{X_{\rm max} - X_{\rm min}}{X_{\rm H3M}}\right)^2} \ , \label{eq:delta_HK}$$

где δ_{m} - пределы допускаемой основной относительной погрешности первичного ИП ИК, %;

Х - измеренное значение, в единицах измерений измеряемой величины.

3 Для расчета погрешности ИК в условиях эксплуатации:

- приводят форму представления основных и дополнительных погрешностей измерительных компонентов ИК к единому виду (приведенная, относительная, абсолютная);
- для каждого измерительного компонента ИК рассчитывают пределы допускаемых значений погрешности в условиях эксплуатации путем учета основной и дополнительных погрешностей от влияющих факторов.

Пределы допускаемых значений погрешности измерительного компонента ИК в условиях эксплуатации рассчитывают по формуле

$$\Delta_{\text{CM}} = \pm \sqrt{\Delta_0^2 + \sum_{i=0}^n \Delta_i^2} \ ,$$

где Δ_0 - пределы допускаемой основной погрешности измерительного компонента;

Для каждого ИК рассчитывают границы, в которых с вероятностью равной 0,95 должна находиться его погрешность в условиях эксплуатации, по формуле

$$\Delta_{\text{MK}} = \pm 1, 1 \cdot \sqrt{\sum_{j=0}^{k} (\Delta_{\text{CMj}})^2} ,$$

где $\Delta_{\text{СИ}j}$ - пределы допускаемых значений погрешности $\Delta_{\text{СИ}}$ *j*-го измерительного компонента ИК в условиях эксплуатации.

Знак утверждения типа

наносится на титульный лист паспорта типографским способом.

Комплектность средства измерений

Комплектность ИС представлена в таблице 6.

Таблица 6 - Комплектность ИС

Наименование	Обозначение	Количество
Система измерительная АСУТП товарно-сырьевого		
парка, наливной эстакады нафты и вакуумного		
газойля комплекса глубокой переработки тяжелых	-	1 шт.
остатков ОАО «ТАИФ-НК», заводской № 03		
(УПВ-01, КГПТО-02)		
Руководство по эксплуатации	-	1 экз.
Паспорт	-	1 экз.
Методика поверки	МП 2401/1-311229-2018	1 экз.

Поверка

осуществляется по документу МП 2401/1-311229-2018 «Государственная система обеспечения единства измерений. Система измерительная АСУТП товарно-сырьевого парка, наливной эстакады нафты и вакуумного газойля комплекса глубокой переработки тяжелых остатков ОАО «ТАИФ-НК». Методика поверки», утвержденному ООО Центр Метрологии «СТП» 24 января 2018 г.

Основные средства поверки:

- средства поверки в соответствии с документами на поверку СИ, входящих в состав ИС;
- калибратор многофункциональный MC5-R-IS (регистрационный номер 22237-08).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке ИС.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе измерительной АСУТП товарно-сырьевого парка, наливной эстакады нафты и вакуумного газойля комплекса глубокой переработки тяжелых остатков ОАО «ТАИФ-НК»

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Иокогава Электрик СНГ»

(ООО «Иокогава Электрик СНГ»)

ИНН 7703152232

Адрес: 129090, г. Москва, Грохолький пер. 13, стр. 2 Телефон: (495) 737-78-68, факс: (495) 737-78-69

Web-сайт: http://www.yokogawa.ru E-mail: info@ru.yokogawa.com

Испытательный центр

Общество с ограниченной ответственностью Центр Метрологии «СТП»

Адрес: 420107, Республика Татарстан, г. Казань, ул. Петербургская, д. 50, корп. 5, офис 7

Телефон: (843) 214-20-98, факс: (843) 227-40-10

Web-сайт: http://www.ooostp.ru

E-mail: office@ooostp.ru

Аттестат аккредитации ООО Центр Метрологии «СТП» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311229 от 30.07.2015 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М.п.	« »	2018 г.