ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Юго-Западная ТЭЦ» потребление станции (ГРУ-10 кВ) II очередь

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Юго-Западная ТЭЦ» потребление станции (ГРУ-10 кВ) ІІ очередь (далее - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, контроля ее передачи и потребления за установленные интервалы времени отдельными технологическими объектами, а также сбора, хранения и обработки полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ АО «Юго-Западная ТЭЦ» потребление станции (ГРУ-10 кВ) II очередь решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в сутки, 1 раз в месяц) и /или по запросу автоматический сбор привязанных к единому московскому времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин, сутки, месяц);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача в организации-участники оптового рынка электроэнергии результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений, данным о состоянии средств измерений со стороны сервера;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка пломб, электронных ключей, программных паролей);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (синхронизация и коррекция времени).

АИИС КУЭ АО «Юго-Западная ТЭЦ» потребление станции (ГРУ-10 кВ) II очередь включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее - ТТ) класса точности 0,2S по ГОСТ 7746-2001, трансформаторы напряжения (далее - ТН) класса точности 0,2 по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии типа Альфа А1800 класса точности 0,2S по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и класса точности 0,5 по ГОСТ Р 52425-2005, ГОСТ 26035-83 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-3.

2-й уровень - измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных СИКОН С70 (далее - УСПД), каналообразующую аппаратуру.

3-й уровень - информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, устройство синхронизации времени на базе GPS-приемника типа УСВ-2 (далее - УСВ-2), сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее - ПО) «Пирамида 2000»

Измерительные каналы (далее - ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности без учета коэффициента трансформации. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем - третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов.

Сервер сбора данных обеспечивает сбор измерительной информации с УСПД. В системе предусмотрен доступ к базе данных сервера со стороны APM и информационное взаимодействие с организациями-участниками оптового рынка электроэнергии.

Система выполняет непрерывное измерение приращений активной и реактивной электрической энергии, измерение текущего времени и коррекцию хода часов компонентов системы, а также сбор результатов и построение графиков получасовых нагрузок, необходимых для организации рационального энергопотребления.

Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК, ИВКЭ и ИВК. Для синхронизации шкалы времени в состав ИВК входит устройство синхронизации системного времени типа УСВ-2. УСВ-2 синхронизирует часы по точного времени ОТ спутников глобальной системы позиционирования сигналам (GPS/ГЛОНАСС). УСВ-2 обеспечивает автоматическую коррекцию часов сервера БД. В случае выхода из строя устройства УСВ-2 синхронизация времени выполняется по протоколу NTP от ФГУП «ВНИИФТРИ», открытого тайм-сервера подключенного К Государственному первичному эталону времени. Переключение на резервный канал синхронизации времени производится вручную.

Сервер БД уровня ИВК, периодически, но не реже 1 раз в час, сравнивает свое время со временем УСВ-2, в случае расхождения, превышающие ± 1 с производит коррекцию в соответствии со временем УСВ-2. Коррекция часов УСПД осуществляется со стороны сервера АИИС КУЭ и проводится при расхождении часов УСПД и сервера АИИС КУЭ более чем на ± 0.5 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 3 с.

Журналы событий счетчика электроэнергии и УСПД отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2000» версии 3.0. Идентификационные данные программного обеспечения, установленного на сервере АИИС КУЭ, приведены в таблице 1.

ПО «Пирамида 2000» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «Пирамида 2000».

Таблица 1 - Метрологические значимые модули ПО

таолица т - метрологические значимые модули 110						
Идентификационные признаки	Значение					
Идентификационные наименования модулей	CalcClients.dll; CalcLeakage.dll; CalcLosses.dll;					
ПО	Metrology.dll; ParseBin.dll; ParseIEC.dll;					
	ParseModbus.dll; ParsePiramida.dll;					
	SynchroNSI.dll; VerifyTime.dll					
Номер версии (идентификационный номер) ПО	3.0					
	e55712d0b1b219065d63da949114dae4					
	b1959ff70be1eb17c83f7b0f6d4a132f					
	d79874d10fc2b156a0fdc27e1ca480ac					
	52e28d7b608799bb3ccea41b548d2c83					
Цифровой идентификатор ПО	6f557f885b737261328cd77805bd1ba7					
цифровой идентификатор 110	48e73a9283d1e66494521f63d00b0d9f					
	c391d64271acf4055bb2a4d3fe1f8f48					
	ecf532935ca1a3fd3215049af1fd979f					
	530d9b0126f7cdc23ecd814c4eb7ca09					
	1ea5429b261fb0e2884f5b356a1d1e75					
Алгоритм вычисления цифрового	MD5					
идентификатора ПО	MIDS					

ПО «Пирамида 2000» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ

·	Наименование объекта и номер ИК	Измерительные компоненты					Метрологические характеристики ИК	
Порядковый номер		TT	ТН	Счётчик	УСПД	Вид электро- энергии	Основ- ная погреш- ность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
	Юго-Западная ТЭЦ,	ТОЛ-10-І	ЗНОЛП	A1802RALQ-	СИКОН	Активная	±0,6	±1,5
1	ГРУ-10 кВ, 1 с, яч. 4,	Кл. т. 0,2S	Кл. т. 0,2	P4GB-DW-4	C70			
	ф. ЮЗТ-14/114	600/1	10000/√3:100/√3	Кл. т. 0,2S/0,5	C70	Реактивная	±1,3	±2,5
	Юго-Западная ТЭЦ,	CTS	VTS	A1802RALQ-	СИКОН С70	Активная	±0,6	±1,5
2	ГРУ-10 кВ, 5 с, яч. 2,	Кл. т. 0,2S	Кл. т. 0,2	P4GB-DW-4				
	ф. ЮЗТ-52/152	1000/1	$10000/\sqrt{3}:100/\sqrt{3}$	Кл. т. 0,2S/0,5	C70	Реактивная	±1,3	±2,5
	Юго-Западная ТЭЦ,	CTS	VTS	A1802RALQ-	СИКОН	Активная	±0,6	±1,5
3	ГРУ-10 кВ, 5 с, яч. 4,	Кл. т. 0,2S	Кл. т. 0,2	P4GB-DW-4	C70			
	ф. ЮЗТ-54/154	1000/1	10000/√3:100/√3	Кл. т. 0,2S/0,5	C70	Реактивная	±1,3	±2,5
	Юго-Западная ТЭЦ,	CTS	VTS	A1802RALQ-	СИКОН	Активная	±0,6	±1,5
4	ГРУ-10 кВ, 6 с, яч. 2,	Кл. т. 0,2S	Кл. т. 0,2	P4GB-DW-4	C70			
	ф. ЮЗТ-62/162	1000/1	$10000/\sqrt{3}:100/\sqrt{3}$	Кл. т. 0,2S/0,5	C70	Реактивная	±1,3	±2,5
	Юго-Западная ТЭЦ,	CTS	VTS	A1802RALQ-	СИКОН С70	Активная	±0,6	±1,5
5	ГРУ-10 кВ, 6 с, яч. 6,	Кл. т. 0,2S	Кл. т. 0,2	P4GB-DW-4				
	ф. ЮЗТ-66/166	600/1	$10000/\sqrt{3}:100/\sqrt{3}$	Кл. т. 0,2S/0,5	C/0	Реактивная	±1,3	±2,5
	Юго-Западная ТЭЦ,	CTS	VTS	A1802RALQ-	СИКОН	Активная	±0,6	±1,5
6	ГРУ-10 кВ, 7 с, яч. 2,	Кл. т. 0,2S	Кл. т. 0,2	P4GB-DW-4	C71KO11			
	ф. ЮЗТ-72/172	1000/1	$10000/\sqrt{3}:100/\sqrt{3}$	Кл. т. 0,2S/0,5	C70	Реактивная	±1,3	±2,5

Окончание таблицы 2

1	2	3	4	5	6	7	8	9
	Юго-Западная ТЭЦ,	CTS	VTS	A1802RALQ-	СИКОН	Активная	±0,6	±1,5
7	ГРУ-10 кВ, 7 с, яч. 6,	Кл. т. 0,2S	Кл. т. 0,2	P4GB-DW-4	C70			
	ф. ЮЗТ-76/176	600/1	10000/√3:100/√3	Кл. т. 0,2S/0,5	C70	Реактивная	$\pm 1,3$	$\pm 2,5$
	Юго-Западная ТЭЦ,	CTS	VTS	A1802RALQ-	СИКОН	Активная	±0,6	±1,5
8	ГРУ-10 кВ, 8 с, яч. 2,	Кл. т. 0,2S	Кл. т. 0,2	P4GB-DW-4	C70			
	ф. ЮЗТ-82/182	1000/1	$10000/\sqrt{3}:100/\sqrt{3}$	Кл. т. 0,2S/0,5	C/0	Реактивная	±1,3	±2,5

Погрешность СОЕВ АИИС КУЭ не превышает ± 5 с.

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos \phi = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 8 от 5 до плюс 35 °C.
- 4. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа. Допускается замена устройства синхронизации времени на однотипные утвержденного типа. Замена оформляется в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 - Основные технические характеристики ИК

Наименование характеристики	Значение
	3начение 8
Количество измерительных каналов	O
Нормальные условия:	
параметры сети: - напряжение, % от U _{ном}	от 98 до 102
- напряжение, % от О _{ном} - ток, % от I _{ном}	от 100 до 120
- ток, 70 от т _{ном} - частота, Гц	от 49,85 до 50,15
- частота, т ц - коэффициент мощности совф	0.9
- коэффициент мощности соѕф - температура окружающей среды, °C	от +21 до +25
Условия эксплуатации:	01 +21 д0 +23
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- наприжение, % от О _{ном} - ток, % от I _{ном}	от 2 до 120
- ток, 70 от т _{ном} - коэффициент мощности	от 0,5 инд. до 0,8 емк.
- коэффициент мощности - частота, Гц	от 49,5 до 50,5
- частога, г ц - температура окружающей среды для ТТ и ТН, °С	от +5 до +35
- температура окружающей среды в месте расположения	01 +3 до +33
- температура окружающей среды в месте расположения счетчиков, °C	от +5 до +35
- температура окружающей среды в месте расположения	01 тэ до тээ
сервера БД, °C	от +10 до +35
Надежность применяемых в АИИС КУЭ компонентов:	01 +10 до +33
Счетчики:	
- среднее время наработки на отказ, ч, не менее:	120000
- среднее время восстановления работоспособности, ч	24
УСПД:	
- среднее время наработки на отказ, ч, не менее:	70000
- среднее время восстановления работоспособности, ч Сервер БД:	12
- коэффициент готовности, не менее	0,99
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сутки, не менее	45
- при отключении питания, лет, не менее	10
УСПД:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сутки, не менее	45
- при отключении питания, лет, не менее	10
Сервер БД:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) АО «Юго-Западная ТЭЦ» потребление станции (ГРУ-10 кВ) II очередь типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ АО «Юго-Западная ТЭЦ» потребление станции (ГРУ-10 кВ) II очередь представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Рег. №	Количество, шт.
Трансформатор тока	ТОЛ-10-І	15128-07	3
Трансформатор тока	CTS	38209-08	21
Трансформатор напряжения	ЗНОЛП	23544-07	3
Трансформатор напряжения	VTS	38210-08	12
Счётчик электрической энергии многофункциональный	Альфа A1802RALQ- P4GB-DW-4	31857-11	7
Счётчик электрической энергии многофункциональный	Альфа A1802RALQ- P4GB-DW-4	31857-06	1
Устройство сбора и передачи данных	СИКОН С70	28822-05	2
Устройство синхронизации системного времени	УСВ-2	41681-10	1
Программное обеспечение	Пирамида 2000	-	1
Методика поверки	МП 206.1-373-2017	-	1
Формуляр	ПЭ-290-ZА-001	-	1

Поверка

осуществляется по документу МП 206.1-373-2017 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Юго-Западная ТЭЦ» потребление станции (ГРУ-10 кВ) II очередь. Методика поверки», утвержденному ФГУП «ВНИИМС» 31.10.2017 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков Альфа A1802RALQ-P4GB-DW-4 по документу «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки ДЯИМ.411152.018 МП», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в 2011 г.;
- УСПД СИКОН С70 по документу «Контроллеры сетевые индустриальный СИКОН С70. Методика поверки ВЛСТ 220.00.000 И1», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в мае 2005 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04:
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0.1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0.1%.
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 до 19,99 мТл.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих - кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ АО «Юго-Западная ТЭЦ» потребление станции (ГРУ-10 кВ) II очередь», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Юго-Западная ТЭЦ» потребление станции (ГРУ-10 кВ) II очередь»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью «ПетроЭнергоцентр»

(ООО «ПетроЭнергоцентр»)

ИНН 7842345538

Адрес: 191119, г. Санкт-Петербург, ул. Днепропетровская, д.33, лит.А, пом. 11-15(2H)

Телефон: +7 (812) 764-99-00 Факс: +7 (812) 572-32-29

E-mail: <u>petroenergocentr@mail.ru</u> Web-сайт: petroenergocenter.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 437-56-66 E-mail: <u>office@vniims.ru</u> Web-сайт: www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа N 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «____» _____2018 г.