ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Термопреобразователи сопротивления СТК

Назначение средства измерений

Термопреобразователи сопротивления CTR (далее по тексту - термопреобразователи или TC) предназначены для измерений температуры жидких, газообразных и сыпучих сред, не агрессивных к материалу защитной арматуры TC.

Описание средства измерений

Принцип действия ТС основан на зависимости сопротивления тонкопленочного платинового, медного или никелевого термочувствительного элемента (ЧЭ) от температуры.

TC CTR имеют исполнения различающиеся друг от друга типом и количеством ЧЭ, классом допуска, схемой соединения внутренних проводов с ЧЭ и конструктивным исполнением. Структурная схема обозначения ТС приведена ниже:

CTR / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 / 11 / 12 / 13

где:

- 1- количество ЧЭ (1, 2); их тип: Pt 100; Pt1000, Pt500, 50M, 100M, Cu50, Cu100, 100H, Ni1003;
- 2- класс допуска ЧЭ: А; В; С;
- 3- схема соединения внутренних проводов: 2, 3, 4 проводная.
- 4- диаметр защитного корпуса, мм: 3; 4,5; 5; 6; 7; 8; 9; 10; 11; 15; 22; (толщина стенки для диаметра 22, мм: 2; 3,5;)
- 5- материал защитного корпуса: AISI (304, 310, 316, 321), 10H2M, 15HM.
- 6- длина погружной части ТС, мм L;
- 7- длина выносной части TC, мм S либо длина кабеля м, C и материал оболочки (Silicon, ETFE, PU).
- 8 процессные присоединения с ответной частью арматуры защитного корпуса:
 - резьбовые:
 - неподвижные: гайка (FH), штуцер (МН);
 - подвижные: гайка (FP), штуцер (MP);
 - быстро разъёмные:
 - CAMLOCK (Mil A-A-59326A, EN 14420-7, DIN 2828):
 - (А)- адаптер с внутренней резьбой,
 - (F) адаптер с наружной резьбой,
 - (D) адаптер кулачковый с внутренней резьбой);
 - Clamp;
 - DIN;
 - SMS:
 - DRD:
 - Varivent;
 - Level;
- фланцевые (Т):
- (ТР) подвижный фланец,
- (ТН) неподвижный фланец;
- 9 Опционально: NA, B, DA, DAW, DAO, MA, PZ (тип головки), либо PM, PD (разъемное соединение).
- 10 Опционально: KZ (колодка), ТП (LI, GI, AT, ATL и иных производителей) с указанием устанавливаемого количества и данных в соответствии с описанием их типа.

- 11 Опционально Ex, Exd, Ec (исполнение).
- 12 Опционально Q (код дополнительной проверки качества).
- 13 Код представительства производителя (RU).

ТС СТR состоят из измерительной вставки с одним или двумя тонкопленочными или проволочными платиновыми, медными или никелевыми ЧЭ, защитной арматуры с различными видами технологических соединений и монтажных элементов (Далее по тексту - защитный корпус), защитной головки или без неё - с удлинительными проводами или платформой с керамической клеммной колодкой (КZ) или без нее. Защитные головки изготавливаются из алюминиевого сплава (AL) или нержавеющей стали (PZ) и отличаются друг от друга конструктивным исполнением. ТС без защитной головки кабельного типа (С) изготавливаются с силиконовым (Silicon), фторопластовым (ETFE) или полиуретановым (PU) кабелем. Для защиты кабеля может применяться фторопластовая оболочка.

TC CTR могут применяться в комплекте с измерительными преобразователями типа LI, GI, AT, ATL пр-ва фирмы APLISENS S.A. или иных производителей (утвержденных типов), встраивая их в защитную головку или располагая на платформе.

TC могут имеют двух-, трех- или четырехпроводную схему соединения внутренних проводов с ЧЭ.

TC могут изготавливаться в общепромышленном и взрывозащищенном исполнениях с видами взрывозашиты «искробезопасная цепь» и «взрывонепроницаемая оболочка».

Фотографии различных типов головок TC, разъемных соединений, TC кабельного типа, TC в защитной оболочке, а также защитных корпусов TC приведены на рисунках 1-18.

Типы головок применяемых для TC CTR:

Рисунок 1 - Внешний вид тип - NA Степень защиты: IP65. Материал корпуса алюминиевый сплав.

Рисунок 2 - Внешний вид тип - В Степень защиты IP54. Материал корпуса алюминиевый сплав.

Рисунок 3 - Внешний вид тип - DA Степень защиты IP65. Материал корпуса алюминиевый сплав.

Рисунок 4 - Внешний вид тип - DAW Степень защиты IP65. Материал корпуса алюминиевый сплав.

Рисунок 5 - Внешний вид тип - DAO Степень защиты IP66. Материал корпуса алюминиевый сплав.

Рисунок 6 - Внешний вид тип - MA Степень защиты IP54. Материал корпуса алюминиевый сплав.

Рисунок 7 - Внешний вид тип PZ Степень защиты IP65. Материал корпуса головки нержавеющая никелированная сталь 304.

Типы разъёмных соединений, применяемых для TC CTR:

Рисунок 8 - Внешний вид тип РМ. Степень защиты ІР67

Рисунок 9 - Внешний вид тип PD. Степень защиты IP65

Типы TC CTR кабельного типа (K):

Рисунок 10 - Внешний вид с силиконовым (Silicon) кабелем Степень защиты IP68 (погружение не более 20м.)

Рисунок 11 - Внешний вид с фторопластовым (ETFE) экранированным кабелем Степень защиты IP66

Рисунок 12 - Внешний вид с полиуретановым (PU) кабелем Степень защиты IP67

Рисунок 13 - Внешний вид в металлической оболочке (Х). Степень защиты IP54

Типы TC CTR в защитной оболочке:

Рисунок 14 - Внешний вид без защитной головки и платформы для клеммной колодки или измерительного преобразователя

Рисунок 15 - Внешний вид с платформой для клеммной колодки или измерительного преобразователя

Рисунок 16 - Внешний вид с платформой и керамической клеммной колодкой (KZ)

Рисунок 17 - Внешний вид с платформой и измерительным преобразователем

Тип бюджетного исполнения Ec (без защитной оболочки чувствительного элемента):

Рисунок 18 - Внешний вид типа исполнения Ес. Степень защиты IP65

Программное обеспечение отсутствует.

Метрологические и технические характеристики

приведены в таблице 1.

Таблица 1 - Метрологические и технические характеристики термопреобразователей сопротивления CTR

сопротивления CTR			
Наименование характеристики	Значение		
Условное обозначение номинальной			
статической характеристики	Pt100, Pt500, Pt1000, 50M, 100M,		
преобразования (НСХ)	Cu50, Cu100 100H, Ni100		
по ГОСТ 6651-2009/МЭК 60571			
Диапазон измерений температуры в	Pt100, Pt500,	50M, 100M,	100H Ni100
зависимости от материала защитного	Pt1000	Cu50, Cu100	100H M1100
корпуса (марки нержавеющей стали), °С			
- 304ss	от -196 до +660	от -180 до +200	от -60 до +180
- 316L	от -50 до +180	от -50 до +180	от -50 до +180
Температурный коэффициент а , °C ⁻¹	0,00385	0,00428	0,00617
Класс допуска		A, B, C	
Допуск ТС, °С,	для класса A: $\pm (0.15+0.002 \cdot t)$		
где t - абсолютное значение	для класса B: $\pm (0.3+0.005 \cdot t)$		
температуры, °С, без учета знака	для класса В. $\pm (0.5+0.003 \cdot t)$ для класса С: $\pm (0.6+0.01 \cdot t)$		
Электрическое сопротивление изоляции	дин н	(0,0:0,0	0 1 -)
при температуре от +15 до +35 °C и	100		
относительной влажности воздуха			
от 30 до 80 %, МОм, не менее			
Вынесение монтажной головки, мм,	1000		
не более	1000		
Длина кабеля, м, не более	300		
Длина защитного корпуса, мм	от 20 до 12000		
Диаметр защитной арматуры, мм	от 3 до 22		
Масса, кг, не более	5		
Рабочие условия эксплуатации:			
- диапазон температур окружающего			
воздуха в зависимости от			
конструктивного исполнения, °С:			
-относительная влажность воздуха,		от -50 до +150 ^(*)	
%, не более	,,,		
	98		
Средняя наработка на отказ, ч, не менее			
 для ТС с диапазоном измерений в 			
пределах от -50 до +300 °C (включ.)			
 для ТС с нижним пределом диапазона 	70 000		
измерений от -196 до -50 °C (не включ.)			
и верхним пределом св. +300 °C			
	40 000		
Средний срок службы, лет, не менее	10		

Примечание:

^(*) В таблице приведен максимально возможный диапазон температур, значение диапазона для конкретного исполнения определяется материалом оболочки ТС, кабеля, габаритными размерами, и приведено в паспорте на ТС.

Знак утверждения типа

наносится на титульный лист паспорта (в правом верхнем углу) методом штемпелевания.

Комплектность средства измерений

Комплектность поставки ТС приведена в таблице 2.

Таблица 2 - Комплектность средства измерений

Наименование	Количество
Термопреобразователь сопротивления (исполнение - в соответствии с	1 шт.
заказом)	
Паспорт	1 экз.

Поверка

осуществляется по ГОСТ 8.461-2009 «ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Методика поверки».

Основные средства поверки:

Рабочий эталон 3-го разряда по ГОСТ 8.558-2009 - термометр сопротивления эталонный ЭТС-100 (регистрационный № 19916-10);

Измеритель температуры многоканальный прецизионный МИТ 8 (регистрационный № 19736-11);

Термостаты переливные прецизионные ТПП-1 (мод. ТПП-1.0, ТПП-1.1, ТПП-1.2) (Регистрационный № 33744-07).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и (или) паспорт.

Сведения и методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к термопреобразователям сопротивления CTR

ГОСТ 6651-2009 ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

Международный стандарт МЭК 60751:2009 (2008-07). Промышленные чувствительные элементы термометров сопротивления из платины

ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры

ГОСТ 8.461-2009 ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Методика поверки

Техническая документация фирмы-изготовителя.

Изготовитель

Фирма «APLISENS S.A.», Польша

Адрес: 03-192 Warszawa, ul. Morelowa, 7

Телефон: +48 (022) 814-0777 Факс: +48 (022) 814-0778

Заявитель

Общество с ограниченной ответственностью «АПЛИСЕНС» (ООО «АПЛИСЕНС») Адрес: 142450, Московская обл., Ногинский район, г. Старая Купавна, ул. Придорожная,

д. 34

ИНН 7716202508

Телефон: + 7 (495) 989-22-76 Факс: + 7 (495) 989-22-76 доб. 2

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы»

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 437-56-66 Web-сайт: <u>www.vniims.ru</u> E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа N 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2017 г.