OKMU Mactep

Закрытое Акционерное Общество «АКТИ-Мастер» **АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ и ИНФОРМАТИКА**

127254, Москва, Огородный проезд, д. 5, стр. 5 тел./факс (495)926-71-85 E-mail: post@actimaster.ru http://www.actimaster.ru

УТВЕРЖДАЮ

Генеральный директор ЗАО «АКТИ-Мастер»

В.В. Федулов

25 » сентября 2017 г.

Государственная система обеспечения единства измерений

Модули измерительные для резистивных мостовых схем NI PXIe-4339

Методика поверки NI4339MП-2017

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

Д.Р. Васильев

Настоящая методика поверки распространяется на модули измерительные для резистивных мостовых схем NI PXIe-4339 (далее – модули), изготавливаемые компаниями "National Instruments Corporation" (США), "National Instruments Corporation" (Венгрия), "National Instruments Malaysia Sdn. Bhd." (Малайзия), и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки

	Номер	Проведени	е операции
Наименование операции	пункта	при по	верке
	методики	первичной	периодической
Внешний осмотр и подготовка к поверке	6	да	да
Опробование и функциональное тестирование	7.2	да	да
Определение погрешности измерения	7.3	по	по
постоянного напряжения	7.3	да	да
Определение погрешности измерения	7.4	ПО.	ПО.
отношения постоянных напряжений	7.4	да	да

1.2 Если у поверяемого модуля используется один или несколько из 8 измерительных каналов и не все диапазоны, то по запросу пользователя поверка может быть проведена для определенных номеров каналов и диапазонов, при этом должна быть сделана соответствующая запись в свидетельстве о поверке.

2 СРЕДСТВА ПОВЕРКИ

2.1 Рекомендуется применять средства поверки, указанные в таблице 2.

Таблица 2 – Средства поверки

	Наименование	Номер	Требуемые	Рекомендуемый тип	
$N_{\underline{0}}$	средства	пункта	технические	средства поверки,	
	поверки	методики	характеристики	рег. номер реестра	
1	2	3	4	5	
			Средства измерений		
1	Калибратор	7.3	относительная погрешность	Калибратор	
	постоянного	7.4	воспроизведения постоянного	универсальный	
	напряжения		напряжения от 90 mV до 9.5 V	Fluke 9100;	
			не более ± 0.015 %	рег. № 25985-09	
2	Вольтметр	7.4	относительная погрешность измерения	Мультиметр	
	постоянного		постоянного напряжения	цифровой модульный	
	напряжения		от 0.625 до $10~V$ не более $\pm 0.01~\%$	NI PXI-4071;	
				рег. № 57582-14	
	Вспомогательные средства и принадлежности				
1	Шасси	Разделы	не менее 4-х слотов РХІе	National Instruments	
	PXI Express	6, 7		PXIe-1075	
2	Модуль	Разделы	интерфейс PXIe	National Instruments	
	контроллера	6, 7	$HDD \ge 40 \text{ GB}, O3Y \ge 512 \text{ MB}$	PXIe-8105	
3	Монитор	Разделы			
	_	6, 7	•	-	

Продолжение таблицы 2

1	2	3	4	5	
4	Клавиатура	Разделы			
	компьютерная	6, 7	-	•	
5	Манипулятор	Разделы			
	«мышь»	6, 7	-	•	
6	Блок	Разделы	коммутация контактов модуля,	National Instruments	
	терминальный	6, 7	8 каналов	TB-4339/B/C*	
	Программное обеспечение				
1	1 Операционная Разделы управление работой модуля Windows XP		Windows XP		
	система	6, 7		(Windows 7)	
2	Драйвер	Разделы	управление работой модуля	National Instruments	
	_	6, 7	•	NI-DAQmx версии	
				14.5 и выше	
При	Примечание *- Может быть использован любой из указанных терминальных блоков				

- 2.2 Средства измерений должны быть исправны, поверены и иметь документы о поверке.
- 2.3 Допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемых генераторов с требуемой точностью.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области электрических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.
- 4.2 Во избежание несчастного случая и для предупреждения повреждения модуля необходимо обеспечить выполнение следующих требований:
- подсоединение шасси с модулем к сети должно производиться с помощью сетевого кабеля из комплекта шасси;
- заземление шасси и средств поверки должно производиться посредством заземляющих контактов сетевых кабелей;
- присоединения модуля и средств поверки следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах);
- запрещается работать с модулем в условиях температуры и влажности, выходящих за пределы рабочего диапазона, а также при наличии в воздухе взрывоопасных веществ;
 - запрещается работать с модулем в случае обнаружения его повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ± 5) °C;
- относительная влажность воздуха от 30 до 70 %;
- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

- 6.1.1 При проведении внешнего осмотра проверяются:
- чистота и исправность разъемов модуля;
- отсутствие механических повреждений корпуса модуля или платы;
- правильность маркировки и комплектность модуля.
- 6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого модуля, его следует направить в сервисный центр для проведения ремонта.

6.2 Подготовка к поверке

- 6.2.1 Перед началом работы следует изучить руководство по эксплуатации модуля, а также руководства по эксплуатации применяемых средств поверки.
 - 6.2.2 Выполнить установку модуля:
 - 1) установить в 3 левых слота шасси РХІе модуль контроллера;
 - 2) присоединить к контроллеру монитор, клавиатуру и мышь;
 - 3) подсоединить шасси и монитор к сети 220 V/50 Hz;
 - 4) установить модуль в слот шасси РХІе;
- 5) в свободные слоты шасси установить фальш-панели; выбрать на шасси режим высокой скорости вентилятора;
 - 6) присоединить к входному разъему модуля терминальный блок ТВ-4339;
 - 7) включить шасси и контроллер, дождаться загрузки Windows.
- 6.2.3 Если на контроллере не установлен драйвер NI-DAQmx версии 14.5 и выше, то следует инсталлировать драйвер из комплекта модуля в соответствии с указаниями руководства по эксплуатации модуля.
- 6.2.3 Подготовить к работе калибратор и мультиметр (при использовании цифрового мультиметра NI PXI-4071 его следует установить в слот PXI шасси и запустить виртуальную панель программы NI-DMM).
- 6.2.4 Выдержать модуль и средства поверки во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева модуля 20 min.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Общие указания по проведению поверки

- 7.1.1 Операции поверки следует выполнять последовательно для каждого из каналов, подлежащих поверке.
 - 7.1.2 В процессе выполнения операций результаты заносятся в протокол поверки.

Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах 7.3, 7.4.

При получении отрицательных результатов необходимо повторить операцию. При повторном отрицательном результате генератор следует направить в сервисный центр для проведения регулировки или ремонта.

7.2 Опробование и функциональное тестирование

- 7.2.1 Запустить программу "Measurement & Automation Explorer", затем в меню "Devices & Interfaces" выбрать ярлык с наименованием шасси и убедиться в том, что в списке устройств отображается наименование модуля и номер слота шасси. Кликнуть на имени модуля, при этом в окне должен отобразиться серийный номер модуля и номер слота шасси.
- 7.2.2 В меню "Software" выбрать папку "Software", открыть вложенную папку "NI-DAQmx Device Driver". В окне справа должен отобразиться номер версии (Version) драйвера.
- 7.2.3 В меню "Devices & Interfaces" кликнуть на наименовании модуля в списке устройств, запустить процедуру тестирования "Self-Test". После завершения процедуры тестирования должно появиться сообщение "The self test completed successfully".
- 7.2.4 В верхней строке нажать клавишу "Create Tack" и выбрать "Acquire Signals" "Analog Input" "Voltage"

Во внутреннем окне "Supported Physical Channels" выбрать номер канала, подтвердить выбор нажатием "Next", в открывшемся окне нажать "Finish".

В окне "Channel Settings" кликнуть правой кнопкой мыши на строке "Voltage".

Выбрать опцию "Change Physical Channel", в появившемся списке выбрать следующий номер канала, подтвердить выбор нажатием "ОК". Проверить аналогично остальные каналы.

В ходе проверки выбора каналов не должно быть сообщений об ошибках.

7.2.5 В верхней строке нажать клавишу "Add Channels" и выбрать "Custom Voltage with Excitation".

Во внутреннем окне "Supported Physical Channels" выбрать номер канала, и подтвердить выбор нажатием "ОК".

В окне "Channel Settings" кликнуть правой кнопкой мыши на строке "Voltage".

Выбрать опцию "Change Physical Channel", в появившемся списке выбрать следующий номер канала, подтвердить выбор нажатием "ОК". Проверить аналогично остальные каналы.

В ходе проверки выбора каналов не должно быть сообщений об ошибках.

7.2.5 Записать результаты проверки по пунктам 7.2.1 - 7.2.5 в таблицу 7.2.

Таблица 7.2 – Опробование и функциональное тестирование

Содержание проверки	Результат проверки	Критерии проверки
отображение серийного номера и		правильно отображаются серийный номер и номер
номера слота шасси		слота шасси
идентификация ПО		"NI-DAQmx" версии
идентификация ПО		14.5 или выше
процедура "Self-Test"		сообщение "The self-test
		completed successfully"
выбор каналов		нет сообщений об ошибках

7.3 Определение погрешности измерения постоянного напряжения

- 7.3.1 Выполнить соединения выбранного канала модуля с калибратором, используя кабель с разъемами "banana" из комплекта калибратора, короткие отрезки провода сечением (0.5 ... 1.0) mm и зажимы типа «крокодил»:
 - соединить контакт "АІ+" терминального блока с гнездом "НІ" калибратора;
 - соединить контакт "AI-" терминального блока с гнездом "LO" калибратора.
- 7.3.2 В окне "Channel Settings" выбрать строку "Voltage" и кликнуть правой кнопкой мыши. Выбрать опцию "Change Physical Channel", в появившемся списке выбрать нужный номер канала, подтвердить выбор нажатием "OK".
 - 7.3.3 Сделать установки:

Display Type: Table

Terminal configuration: Differential

Acquisition Mode: Continuous Samples; Rate (Hz): 25000 (25k); Samples to Read: 20000 (20k)

- 7.3.4 Ввести диапазон измерений Signal Input Range, указанный в столбце 1 таблицы 7.3 (Мах Value положительное значение, Min Value отрицательное значение)
- 7.3.5 Установить на калибраторе соответствующее значение постоянного напряжения, указанное в столбце 2 таблицы 7.3, и активировать его выход в положение "ON".
 - 7.3.6 Запустить процесс сбора данных нажатием клавиши "Run".
 - 7.3.7 Записать отображаемый результат в соответствующую ячейку столбца 3 таблицы 7.3. Отсчет на модуле должен находиться в пределах, указанных в столбце 4 таблицы 7.3.

Таблица 7.3 – Погрешность измерения постоянного напряжения

Диапазон Signal Input Range	Значение напряжения калибратора	Измеренное значение напряжения	Пределы допускаемых значений
1	2	3	4
	0 mV		±0.074 mV
±100 mV	+95 mV		+(94.869 95.131) mV
	−95 mV		–(94.869 95.131) mV
	0 mV		±0.089 mV
±200 mV	+190 mV		+(189.797 190.203) mV
	−190 mV		-(189.797 190.203) mV
	0 mV		±0.133 mV
±500 mV	+475 mV		+(474.582 475.418) mV
	–475 mV		–(474.582 475.418) mV
	0 V		±0.0016 V
±10 V	+9.5 V		+(9.4927 9.5073) V
	−9.5 V		-(9.4927 9.5073) V

- 7.3.8 Выполнить действия по пунктам 7.3.4 7.3.7 для остальных диапазонов напряжения, указанных в таблице 7.3.
 - 7.3.9 Остановить процесс сбора данных нажатием клавиши "Stop".
 - 7.3.10 Перевести выход калибратора в положение "OFF".
- 7.3.11 Выполнить действия по пунктам 7.3.1 7.3.10 для остальных каналов модуля, подлежащих поверке.

7.3.12 В окне "Channel Settings" выбрать строку "Voltage" и кликнуть правой кнопкой мыши. Выбрать опцию "Remove From Task", подтвердить выбор нажатием "Yes".

7.4 Определение погрешности измерения отношения постоянных напряжений

- 7.4.1 Выполнить соединения выбранного канала модуля с калибратором и мультиметром, используя кабели с разъемами "banana" из комплектов калибратора и мультиметра, короткие отрезки провода сечением (0.5 ... 1.0) mm и зажимы типа «крокодил»:
 - соединить контакт "АІ+" терминального блока с гнездом "НІ" калибратора;
 - соединить контакт "АІ-" терминального блока с гнездом "LO" калибратора;
 - соединить контакт "Ех+" терминального блока с гнездом "НІ" мультиметра;
 - соединить контакт "Ех-" терминального блока с гнездом "LO" мультиметра.
- 7.4.2 В окне "Channel Settings" выбрать строку "Custom Voltage with Excitation" и кликнуть правой кнопкой мыши. Выбрать опцию "Change Physical Channel", в появившемся списке выбрать нужный номер канала, подтвердить выбор нажатием "ОК".
 - 7.4.3 Сделать установки:

Display Type: Table

Ex Source: Internal; Bridge Type: Full Bridge

Terminal configuration: Differential

Acquisition Mode: Continuous Samples; Rate (Hz): 25000 (25k); Samples to Read: 20000 (20k)

- 7.4.4 Ввести первые значения напряжения питания моста Vex Value и диапазона измерений Signal Input Range, (Max Value положительное значение, Min Value отрицательное значение), указанные в таблице 7.4.
 - 7.4.5 Запустить процесс сбора данных нажатием клавиши "Run".
- 7.4.6 Записать измеренное мультиметром значение напряжения Uex (5 разрядов) в столбец 2 таблицы 7.4.
 - 7.4.7 Вычислить расчетное значение постоянного напряжения на калибраторе как $Uc = Knom \cdot Uex$, где

Knom – указанное в столбце 1 таблицы 7.4 номинальное значение отношения напряжений; Uex – значение напряжения питания, измеренное мультиметром (столбец 2 таблицы 7.4). Записать вычисленное значение Uc в столбец 3 таблицы 7.4.

ПРИМЕР 1: Номинальное значение отношения напряжений Knom = 9 mV/V, измеренное мультиметром значение Uex = 10.0142 V. При этом расчетное значение напряжения на калибраторе Uc = Knom·Uex = $(9 \text{ mV/V}) \cdot (10.0142 \text{ V}) = 90.128 \text{ mV}$.

ПРИМЕР 2: Номинальное значение отношения напряжений Knom = 900 mV/V, измеренное мультиметром значение Uex = 2.7458 V. При этом расчетное значение напряжения на калибраторе $Uc = Knom \cdot Uex = (900 \text{ mV/V}) \cdot (2.7458 \text{ V}) = 2471.22 \text{ mV} = 2.47122 \text{ V}$.

- 7.4.8 Установить на калибраторе расчетное значение постоянного напряжения Uc, записанное в столбце 3 таблицы 7.4, и активировать выход калибратора в положение "ON".
- 7.4.9 Записать отображаемый в окне "DC Value" панели модуля отсчет отношения напряжений К в столбец 4 таблицы 7.4.
- 7.4.10 Выполнить действия по пунктам 7.4.4 7.4.9 для остальных значений напряжения питания моста Vex Value и диапазона измерений Signal Input Range, указанных в таблице 7.4.
 - 7.4.11 Остановить процесс сбора данных нажатием клавиши "Stop".
 - 7.4.12 Перевести выход калибратора в положение "OFF".

Таблица 7.4 – Погрешность измерения отношения постоянных напряжений

Таолица /	.4 – Погрешность	измерения отноше	ния постоянных н	апряжении
Номинальное	Иоморолича	Расчетное	Иоморонно	Продоли попускоски пу
значение	Измеренное	значение	Измеренное	Пределы допускаемых значений отношения
отношения	мультиметром напряжение	напряжения калибратора	значение	напряжений,
напряжений	напряжение Uex, V	Uc = Knom·Uex,	отношения K, mV/V	mV/V
Knom, mV/V	UEA, V	mV	IX, III V / V	III V / V
1	2	3	4	5
Vex	Value 10 V; Signal	I Input Range ±10 m	V/V	
0				±0.0074
+9				+(8.9836 9.0164)
_9				-(8.9836 9.0164)
Vex	Value 7.5 V: Signa	l Input Range ±20 m	nV/V	,
0	, <u>U</u>	1 6		±0.012
+18				+(17.970 18.030)
-18				-(17.970 18.030)
	Value 5 V: Signal	Input Range ±50 mV	//\/	(17.570 10.050)
0	value 5 v, Signar	mput Range ±30 m v	/ v	±0.027
+45				
				+(44.928 45.072)
_45	7/1 227/C:	11 4D +50	X 7 /X 7	- (44.928 45.072)
	Value 3.3 V; Signa	l Input Range ±50 m	1 V / V	10.040
0	2 2020	0		±0.040
+45	3.3020			+(44.915 45.085)
<u>–45</u>				-(44.915 45.085)
	Value 2.75 V; Sign	nal Input Range ±100	00 mV/V	
0				±0.57
+900				+(898.53 901.47)
-900				- (898.53 901.47)
Vex	Value 2.5 V; Signa	l Input Range ±40 m	nV/V	
0				±0.030
+36				+(35.954 36.066)
-36				-(35.954 36.066)
Vex	Value 2 V; Signal	Input Range ±80 mV	7/V	
0				±0.05
+72				+(71.883 72.117)
-72				- (71.883 72.117)
	Value 1.5 V; Signa	l Input Range ±200	mV/V	, , , , , , , , , , , , , , , , , , , ,
0	, <u>C</u>			±0.09
+180				+(179.73 180.27)
-180				-(179.73 180.27)
	Value 1 V [.] Signal	Input Range ±200 m	V/V	(=:::::::::::::::::::::::::::::::::::::
0	, , , , , , , , , , , , , , , , , , , ,			±0.133
+180				+(179.69 180.31)
-180				-(179.69 180.31)
	Value 0.625 V. Sie	mal Input Danca + 40	 	-(1/3.U3 10U.31)
0	value 0.023 v, SIg	gnal Input Range ±40		±2.50
+3600				+(3593.9 3606.1)
-3600				- (3593.9 3606.1)

7.4.13 Выполнить действия по пунктам 7.4.1-7.4.12 для остальных каналов модуля, подлежащих поверке.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

По завершении операций поверки оформляется протокол поверки в произвольной форме с указанием следующих сведений:

- полное наименование аккредитованной на право поверки организации;
- номер и дата протокола поверки
- наименование и обозначение поверенного средства измерения
- заводской (серийный) номер;
- обозначение документа, по которому выполнена поверка;
- наименования, обозначения и заводские (серийные) номера использованных при поверке средств измерений, сведения об их последней поверке;
 - температура и влажность в помещении;
 - фамилия лица, проводившего поверку;
- результаты определения метрологических характеристик по форме, аналогичной таблицам раздела 7 настоящего документа.

Допускается не оформлять протокол поверки отдельным документом, а результаты поверки (метрологические характеристики) указать на оборотной стороне свидетельства о поверке.

8.2 Свидетельство о поверке и знак поверки

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.