ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Аппаратура геодезическая спутниковая многочастотная РС-2

Назначение средства измерений

Аппаратура геодезическая спутниковая многочастотная PC-2 (далее – приемники) предназначена для определения приращений координат и измерений длин базисных линий.

Описание средства измерений

Принцип действия приемников основан на измерении параметров навигационных сигналов глобальных навигационных спутниковых систем и их последующей обработке.

Конструктивно приемник состоит из основных частей: спутниковой геодезической антенны и станции (приёмника радиосигналов). В корпусе станции расположены модули беспроводных технологий Bluetooth. Принимаемая со спутников информация записывается во внутреннюю память станции.

На передней панели станции расположены:

- две функциональные кнопки;
- четыре навигационных кнопки («Вверх», «Вниз», «Влево», «Вправо»);
- кнопка «Вкл/Выкл» для включения и выключения приемника;
- четыре светодиодных индикатора: «Bluetooth» светится при использовании Bluetooth; Спутники» светится при получении сигнала от спутников; «Запись» отображает статус записи данных и мигает в процессе записи; «Электропитание» светится красным цветом в процессе работы приемника.

На задней панели корпуса станции расположены следующие разъемы:

- порт с двухштырьковым разъемом Lemo для подключения питания базовой станции;
- порт с разъемом ТМС для подключения внешней спутниковой геодезической антенны;
- порт с разъемом TNC для подключения внешних часов приёмника;
- два порта RS-232 с семиштырьковым разъемом Lemo для подключения к контроллеру или ПК;
 - последовательный порт DB9;
 - разъем для SIM-карты стандартного размера;
 - разъем Ethernet RJ45;
 - разъем для 1PPS выход 1 импульс/секунда;
 - разъем для EVENT ввод события.

Станция имеет miniUSB-разъем последовательного порта, разъем SIM-карты, разъем для подключения внешней GPS/ГЛОНАСС антенны и разъем для подключения внешнего электропитания.

Приемник позволяет одновременно использовать спутники навигационных систем ГЛОНАСС, GPS, BeiDou.

Пломбирование крепёжных винтов корпуса станции не предусмотрено, ограничение доступа к узлам обеспечено конструкцией крепёжных винтов, которые могут быть сняты только при наличии специальных ключей.

Общий вид станции представлен на рисунке 1. Внешний вид станции со стороны нижней панели с указанием места нанесения знака утверждения типа приведен на рисунке 2.

Рисунок 1 – Общий вид станции

Рисунок 2 – Внешний вид станции со стороны нижней панели

знаком утверждения типа

Программное обеспечение

Приемники PC-2 поставляются со встроенным программным обеспечением (далее ПО) «Net20 Plus-20170221-bootv0204-kenelv0214-app0212-web0212.bin». Данное ПО позволяет осуществлять измерительный процесс в полевых условиях. В комплекте с приемниками поставляются также ПО: «StaticToRinex» и «GEO Geomatics Office» (GGO), устанавливаемое на персональный компьютер. С помощью указанного ПО обеспечивается взаимодействие модулей приемника и полевого контроллера, настройка и управление рабочим процессом, хранение и передачи результатов измерений, а также постобработка измеренных данных.

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «Высокий» в соответствии с Р 50.2.077-2014. Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные

таолица 1 – иденти	фикационные данные				
Наименование	Значение				
ПО	аппаратно-встроенная про-	программа для	программа для по-		
	грамма для аппаратуры гео-	постобработки	стобработки «GEO		
	дезической спутниковой од-	«StaticToRinex»	Geomatics Office»		
	ночастотной РС-2, «Net20				
	Plus-20170221-bootv0204-				
	kenelv0214-app0212-				
	web0212.bin»				
Идентификаци-	Net20 Plus-20170221-	Static-	GGO_20170328.ms		
онное наимено-	bootv0204-kenelv0214-	ToRinex_20161128.	i		
вание ПО	app0212-web0212.bin	exe			
Номер версии	Net20Plus-20170221-	Static-	GGO_20170328_v1		
(идентификаци-	bootv0204-kenelv0214-	ToRinex_20161128_	.0.0		
онный номер) ПО	app0212-web0212.bin	v1.0			
Цифровой иден-	8cf33f4cc2b23aef2e8a3bbe1c2f	257a3adebd34e46f7d			
тификатор ПО	b469	22abc08d935c3f	372376e1691a273		
Алгоритм вычис-	MD5	MD5	MD5		
ления цифрового					
идентификатора					
ПО					

Метрологически значимая часть ПО приемников и измеренные данные защищены с помощью специальных средств защиты от преднамеренных изменений.

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «Высокий» в соответствии с Р 50.2.077-2014

Метрологические и технические характеристики

приведены в таблице 2 и 3.

Таблица 2 - Метропогические характеристики

1 аолица 2 - Метрологические характеристики		
Наименование характеристики	Значение	
Режим «Автономный»		
Доверительные границы абсолютной погрешности измерений		
координат (при доверительной вероятности 0,997), мм:		
- в плане	±3600	
- по высоте	±3600	
Режимы «Статика» и «Быстрая статика»**		
Доверительные границы абсолютной погрешности измерений		
длины базиса (при доверительной вероятности 0,997), мм:		
- в плане	$\pm 3 \cdot (3 + 1 \cdot 10^{-6} \cdot D^*)$	
- по высоте	$\pm 3 \cdot (5 + 1 \cdot 10^{-6} \cdot D)$	
Режимы «Кинематика с постобработкой» и «Кинематика в		
реальном времени (RTK)»**		
Доверительные границы абсолютной погрешности измерений		
длины базиса (при доверительной вероятности 0,997), мм:		
- в плане	$\pm 3 \cdot (10 + 1 \cdot 10^{-6} \cdot D)$	
- по высоте	$\pm 3 \cdot (20 + 1 \cdot 10^{-6} \cdot D)$	
Режим «Дифференциальные кодовые измерения»***		
Доверительные границы абсолютной погрешности измерений		
координат (при доверительной вероятности 0,997), мм:		
- в плане	±900	
- по высоте	± 1800	

Таблица 3 – Технические характеристики

Наименование характеристики	Значение	
Каналы	372	
Принимаемые сигналы	- GPS:L1C/A, L1C, L2C, L2P	
	- ГЛОНАСС: L1, L2	
	- BEIDOU: B1, B2, B3	
Напряжение питания постоянного тока:		
- от аккумуляторной батареи, В	11,1	
- от внешнего источника, В	от 9 до 16	
Диапазон рабочих температур, °С	от -30 до +65	
Габаритные размеры станции (длина х ширина х высота), мм,	222x164x79	
не более		
Масса станции, кг, не более	2,0	

^{**} Диапазон длин базисов от 0,07 до 30 км

^{***} Диапазон работы режима от 0,07 до 30 км

Знак утверждения типа

наносится в виде наклейки непосредственно на корпус аппаратуры и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплект поставки приведен в таблице 4.

Таблица 4 - Комплект поставки

Наименование	Обозначение	Количество,
		ШТ.
1 Аппаратура геодезическая спутниковая многочастотная в	PC-2	1 комплект
составе:		
- станция РС-2		1
- адаптер сетевой с набором переходников		1
- кабель USB/RS-232		1
- кабель DB9-RS232		1
- кабель последовательный		1
- кабель антенный 3 м (по заказу потребителя)		1
- антенна	BD	1
- коробка транспортировочная		1
2 Компакт-диск с программным обеспечением и документа-		1
цией в составе:		
- программное обеспечение «StaticToRinex_20161128.exe»		1
- программное обеспечение «GGO_20170328.msi»		1
3 «Аппаратура геодезическая спутниковая многочастотная	5016.00000000 РЭ	1
PC-2». Руководство по эксплуатации		
4 «Аппаратура геодезическая спутниковая многочастотная	5016.00000000 ПС	1
РС-2». Паспорт		

Поверка

осуществляется в соответствии с документом ГОСТ Р 8.793-2012 «Государственная система обеспечения единства измерений. Аппаратура спутниковая геодезическая. Методика поверки».

Основные средства поверки:

- эталонный пространственный полигон 2-го разряда по МИ 2292-94, доверительные границы абсолютной погрешности полигона (при доверительной вероятности 0,95) при измерении приращений координат в плане ± 30 мм;
- линейные базисы по ГОСТ Р 8.750-2011, пределы допускаемой абсолютной погрешности длин линий базиса между геодезическими пунктами $\pm (1\cdot 10^{-6}\cdot D)$ мм, где D- длина базиса в миллиметрах;
- линейка измерительная металлическая 300 мм по ГОСТ 427-75, регистрационный номер № 66266-16 в Федеральном информационном фонде;
- рулетка измерительная металлическая 2 м по ГОСТ 7502-98, регистрационный номер № 46391-11 в Федеральном информационном фонде;
- термогигрометр ИВА-6Н-КП-Д, регистрационный номер № 46434-11 в Федеральном информационном фонде, пределы допускаемой абсолютной погрешности измерения температуры ±0,3 °C.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых приемников с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска поверительного клейма.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к аппаратуре геодезической спутниковой многочастотной РС-2

ГОСТ Р 8.750–2011 «Государственная система обеспечения единства измерений. Государственная поверочная схема для координатно-временных средств измерений»

Аппаратура геодезическая спутниковая многочастотная PC-2. Технические условия. ТУ 4433-151-07539541-2016

Изготовитель

Акционерное общество «ПО «Уральский оптико-механический завод» имени Э.С. Яламова» (АО «ПО «УОМЗ»)

ИНН 6672315362

Адрес: 620100, г. Екатеринбург, Восточная, 336

Телефон: +7(343) 229-82-67 Факс: +7(343) 254-81-09 Web-сайт: www.uomz.ru

E-mail: kancelyariya@uomz.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт физико-технических и радиотехнических измерений»

(ФГУП «ВНИИФТРИ»)

Адрес: 141570, Московская область, Солнечногорский р-н, п/о Менделеево

Юридический адрес: 141570, Московская обл., Солнечногорский р-н, рабочий поселок Менделеево, промзона ВНИИФТРИ, корпус 11

Телефон (факс): +7(495) 526-63-00

Web-сайт: <u>www.vniiftri.ru</u> E-mail: office@vniiftri.ru

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___ » _____ 2017 г.