

УТВЕРЖДАЮ

Генеральный директор

000 «НТЦ Амплитуда»

С.А. Ермилов

2017 г.

УТВЕРЖДАЮ

Директор Центрального отделения ФБУ «ЦСМ «Московской области»

С.Г. Рубайлов

2017 г.

КОМПЛЕКСЫ СПЕКТРОМЕТРИЧЕСКИЕ «МУЛЬТИРАД-ГАММА»

МЕТОДИКА ПОВЕРКИ АЖНС.412131.003МП Настоящая методика поверки распространяется на комплексы спектрометрические «МУЛЬТИРАД-гамма» (далее - «МУЛЬТИРАД-гамма»), изготавливаемые Обществом с ограниченной ответственностью «НТЦ Амплитуда» (ООО «НТЦ Амплитуда»), г. Москва, Зеленоград, и устанавливает методы и средства их первичной и периодической поверок.

Поверку «МУЛЬТИРАД-гамма» проводят юридические лица или индивидуальные предприниматели, аккредитованные в установленном порядке. Требования к организации, порядку проведения поверки и форма представления результатов поверки определяются действующей нормативной базой.

Поверке подлежат все вновь выпускаемые, выходящие из ремонта и находящиеся в эксплуатации радиометры. Первичная поверка производится при выпуске вновь произведенных радиометров и после их ремонта. Периодическая поверка производится при эксплуатации радиометров.

Интервал между поверками составляет один год.

1 ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

1.1 При проведении поверки должны выполняться, указанные в таблице 1.

Таблица	1	Папатта	1111 ATTA	หลบบบั	nu m	nopen	LILITIA	TODANUI
таолица	Ι.	— 11cbcdc	HP OHE	рации п	ири п	ровсд	Снии	поверки

Наименование операции	Номер Пункта методики поверки	-	едение ций при периодиче- ской поверке
1 Внешний осмотр	4.1	Да	Да
The state of the s	4.2		
2 Опробование	4,2	Да	Да
3 Определение диапазона энергии регистрируемого излучения и относительной погрешности характеристики преобразования (интегральной нелинейности)	4.3	+	+
4 Определение абсолютного энергетического разрешения в пике полного поглощения	4.4	+	+
5 Определение относительного энергетического разрешения в пике полного поглощения для БДКС-25-02-2A	4.5	+	+
6 Определение относительной эффективности регистрации в пике полного поглощения	4.6	+	+
7 Оформление результатов поверки	5	+	+

^{1.2} В случае отрицательных результатов поверки по любому пункту таблицы 1 поверяемый радиометр бракуется.

^{1.3} При проведении поверки применяют основные и вспомогательные средства поверки, приведенные в таблице 2.

Таблица 2 – Перечень основных и вспомогательных средств поверки

Номер пункта методики поверки	Наименование средств поверки и вспомогательного оборудования	Технические характеристики
4.2	Калибровочные источники ОСГИ-А ¹⁵² Eu (для БДКС-25-02-01А) ¹³⁷ Cs (для БДКС-25-02-02А)	из комплекта «МУЛЬТИРАД-гамма»
4.3	Рабочие эталоны 2-го разряда по	активность от 1 до 30 кБк,
4.4	ГОСТ 8.033-96 – радионуклидные ис-	погрешность аттестации по
4.5	точники фотонного излучения	активности радионуклида в
4.6	ОСГИ-А с радионуклидами ²⁴¹ Am, ¹³⁷ Cs, ⁶⁰ Co, ¹⁵² Eu, ¹³⁹ Ce	источнике в пределах ±6 %.
3	Термометр	Диапазон от 0 до 40 °C,
		Цена деления 1 °C
3	Барометр-анероид	Диапазон от 80 до 106 кПа,
		Погрешность измерения 3 %
3	Психрометр аспирационный	Диапазон измерения относительной влажности воздуха от 10 до 100 %, Погрешность измерения 5 %
3	Дозиметр-радиометр МКС-АТ6130	Диапазон измерений МАЭД
		фотонного излучения
		от 0,1 до 10 мкЗв/ч,
		пределы допускаемой
		основной относительной
		погрешности ±20 %

- 1.4 Все используемые средства поверки должны быть исправны и иметь действующие свидетельства о поверке.
- 1.5 Работа с эталонными средствами измерений должна проводиться в соответствии с их эксплуатационной документацией.
- 1.6 Допускается применение других средств поверки, обеспечивающих определение метрологических характеристик с требуемой точностью.

2 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 2.1 При поверке следует руководствоваться правилами техники безопасности, изложенными в:
- эксплуатационной документации на «МУЛЬТИРАД-гамма» и в соответствующих разделах руководств по эксплуатации испытательного оборудования;
- СП 2.6.1.2612-10 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)»;
 - СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009),
- в инструкциях и положениях по предотвращению несчастных случаев, действующих на предприятии;

2.2 К проведению поверки «МУЛЬТИРАД-гамма» допускается инженернотехнический персонал со среднетехническим или высшим образованием, имеющим опыт работы в области измерений ионизирующих величин, аттестованный в качестве поверителей и ознакомленный с руководством по эксплуатации (РЭ) и методикой поверки.

3 УСЛОВИЯ ПОВЕРКИ

- 3.1 Поверку проводить в нормальных условиях:
- температура окружающего воздуха от 15 до 25 °C;
- относительная влажность воздуха от 30 % до 80 %,
- атмосферное давление от 86 до 106 кПа,
- 3.2 Перед началом поверки выдержать прибор в нормальных условиях 2 ч.

4 ПРОВЕДЕНИЕ ПОВЕРКИ

4.1 Внешний осмотр

При внешнем осмотре «МУЛЬТИРАД-гамма» должно быть установлено:

соответствие маркировки и комплектности паспорту (РЭ);

наличие и сохранность пломб;

наличие эксплуатационной документации;

отсутствие дефектов, влияющих на работу изделия.

4.2 Опробование

- 4.2.1 При опробовании «МУЛЬТИРАД-гамма» необходимо провести:
- проверку идентификационных данных используемого программного обеспечения (ПО) «Прогресс-5»;
- энергетическую калибровку измерительного тракта «МУЛЬТИРАД-гамма» и измерение фона.
- 4.2.2 Для проверки идентификационных данных используемого программного обеспечения (ПО) «Прогресс-5» необходимо провести следующие операции:
 - включить питание и прогреть «МУЛЬТИРАД-гамма» в течение 30 мин;
 - запустить программу «Прогресс-5»;
 - в меню «УСТРОЙСТВО» выбрать «ГАММА-СПЕКТРОМЕТР»;
- для просмотра справочной информации о программе на экране ПК в верхней строке нажать на значок ?

Идентификационные данные ПО «МУЛЬТИРАД-гамма» должны соответствовать данным, представленным в таблице 3.

Таблица 3

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	«Прогресс-5»		
Номер версии (идентификационный номер) ПО	v. 13X		
Цифровой идентификатор ПО	-		

- 4.2.3 Энергетическая калибровка
- 4.2.3.1 Для проведения энергетической калибровки необходимо провести следующие операции:
- в меню «АВТОПИЛОТ» выбрать задачу «ЭНЕРГЕТИЧЕСКАЯ КАЛИБРОВКА»;
- установить на блок детектирования калибровочный источник ¹⁵²Eu (для БДКС-25-02-01A) или ¹³⁷Cs (для БДКС-25-02-02A) и запустить измерение в режиме энергетической калибровки в соответствии с пунктом 2.1 документа «Программное обеспечение спектрометрических и радиометрических измерительных комплексов ПРОГРЕСС-5. Руководство оператора».
- 4.2.3.2 При нормальном функционировании прибора на экране отображается спектрограмма, подобная приведенным на рисунках 1 и 2.

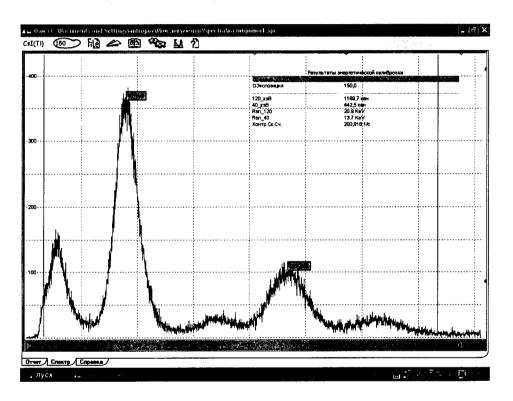


Рисунок 1 – Аппаратурный спектр калибровочного источника ОСГИ-А Eu-152 (для БДКС-25-02-1A)

Рисунок 2 – Аппаратурный спектр калибровочного источника $^{137}\mathrm{Cs}$ (для БДКС-25-02-2A)

- 4.2.3.3 По истечении 150 с набор спектра автоматически прекращается. На спектрограмме флажками отмечаются максимумы пиков полного поглощения излучения контрольного источника ¹⁵²Eu с энергией 40,0 кэВ и 121,8 кэВ или контрольного источника ¹³⁷Cs с энергией 32,2 кэВ и 661,7 кэВ и указываются соответствующие им номера каналов анализатора, а также скорость счета в определенном энергетическом диапазоне.
 - 4.2.3.4 По результатам энергетической калибровки сделать следующие записи:
- 1) в строке 1 в таблице 4 для калибровочного источника ¹⁵²Eu (для БДКС-25-02-1А) занести номера каналов в столбцы «Позиция репера 40,0 кэВ» и «Позиция репера 121,8 кэВ», соответствующие значениям энергии ППП, а в столбец «Контрольная скорость счета» значение контрольной скорости счета.

Таблица 4 – Результаты энергетической калибровки (калибровочный источник ¹⁵²Eu)

№ измерения	Позиция репера 40,0 кэВ	Позиция репера 121,8 кэВ	Контрольная скорость счета
			Cp.

2) в строке 1 в таблице 5 для калибровочного источника ¹³⁷Cs (для БДКС-25-02-2A) занести номера каналов в столбцы «Позиция репера 661,7 кэВ» и «Позиция репера 1461 кэВ», соответствующие значениям энергии ППП, а в столбец «Контрольная скорость счета» – значение контрольной скорости счета.

Таблица 5 – Результаты энергетической калибровки (калибровочный источник ¹³⁷Cs)

№ измерения	Позиция репера 32 кэВ	Позиция репера 662кэВ	Контрольная скорость счета
			Cp.

 $4.2.3.5~ Провести не менее пяти последовательных измерений калибровочного источника <math>^{152}Eu$ (для БДКС-25-02-1A) или ^{137}Cs (для БДКС-25-02-2A), заполняя по их результатам строки таблицы 4 или 5.

4.2.4 Измерение фона

4.2.4.1 Убрать калибровочный источник с блока детектирования, закрыть крышку защиты. Установить время экспозиции не менее 1800 с и нажать «ПРОДОЛЖИТЬ». В процессе измерения программа выводит на экран значения скорости счета в контрольных интервалах для текущего измерения спектра фона и для предыдущего измерения фона (в скобках).

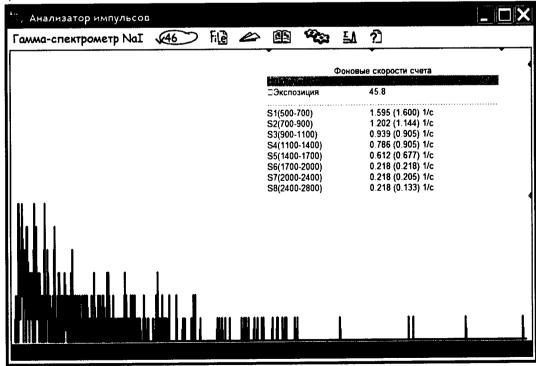


Рисунок 3 – Фоновый спектр

- 4.2.4.2 Если скорость счета хотя бы в одном из контрольных интервалов отличается от измеренного ранее значения более чем на величину, соответствующую введенному в программу критерию, программа выдает предупреждение об изменении фонового спектра.
- В этом случае следует устранить причину, вызвавшую изменение фона спектрометра, и провести два последовательных измерения фона в соответствии с пунктом.4.2.4.1.
- 4.2.4.3 При отсутствии предупреждения об изменении фонового спектра по окончании набора следует занести результаты измерения фона в таблицу 6.

Таблица 6 - Результаты измерения фона

		Скорости счета в интервалах, имп/с						
	1	2	3	4	5	6	7	8
Фоновый спектр								
Фоновый спектр, измеренный ранее								

- 4.2.5 Результаты опробования считаются положительными, если
- идентификационные данные ПО «МУЛЬТИРАД-гамма» соответствуют данным, представленным в таблице 3;
- позиции реперов и контрольная скорость счета в таблицах 4 и 5 отличаются от полученных при предыдущей поверке не более чем на 20 % и 10 % соответственно.
 - программа не выдает предупреждение об изменении фонового спектра.

4.3 Определение диапазона энергии регистрируемого излучения и относительной погрешности характеристики преобразования (интегральной нелинейности)

- 4.3.1 Определение диапазона энергии регистрируемого излучения и относительной погрешности характеристики преобразования «МУЛЬТИРАД-гамма» проводят после проведения энергетической калибровки.
- 4.3.2 Поочередно на блок детектирования устанавливают источники из набора ОСГИ-А (рабочие эталоны 2-го разряда) со следующими радионуклидами:
 - 137 Cs, 152 Eu, 241 Am, 139 Ce для блока детектирования БДКС-25-02-01A;
 - 241 Am, 137 Cs, 60 Co, 152 Eu для блока детектирования БДКС-25-02-02A.
 - 4.3.3 Проводят измерение спектра гамма-излучения каждого источника.

Время экспозиции устанавливают из условия, чтобы число импульсов в каждом выбранном пике было не менее 10000.

Спектры сохраняют для последующей обработки.

- 4.3.4 Проводят обработку спектров для каждого блока детектирования. В каждом спектре определяют положения центроид пиков N_i и соответствующие им справочные данные энергий E_{0i} . Определяют характеристику преобразования в виде линейной зависимости $E=A\cdot N+B$.
- 4.3.5 По полученной характеристике преобразования рассчитывают экспериментальные значения энергий E_i , соответствующие положениям пиков N_i ,

сравнивают их с энергиями испущенных источниками гамма-квантов E_{0i} и определяют отклонения по формуле (1):

$$\Delta E_i = |E_i - E_{0i}| \tag{1}$$

4.3.6 Выбирают максимальное значение из полученных разностей (ΔE^{max}) и рассчитывают интегральную нелинейность (ИНЛ) по формуле (2)

$$\Delta E = \left(\frac{\Delta E^{max}}{E_{max}}\right) \cdot 100, \% \tag{2}$$

где E_{max} – верхняя граница диапазона энергий, кэВ.

- 4.3.7 Измерение интегральной нелинейности «МУЛЬТИРАД-гамма» одновременно является проверкой рабочего диапазона энергий регистрируемого гамма-излучения для каждого блока детектирования.
- 4.3.8 Результат поверки считают положительным, если полученное значение ИНЛ не превышает 1,0 % в рабочем диапазоне энергий регистрируемого гамма-излучения.

4.4 Определение абсолютного энергетического разрешения в пике полного поглощения

- 4.4.1~ При поверке используют источники из набора ОСГИ-А (рабочие эталоны 2-го разряда) из радионуклидов ²⁴¹ Ат и ¹⁵² Eu.
- 4.4.2 На блок детектирования устанавливают источник из набора ОСГИ-А с радионуклидом $^{241}\mathrm{Am}.$

Активность источника должна быть такой, чтобы интегральная загрузка спектрометра не превышала $5000 \, \mathrm{c}^{-1}$

- 4.4.3 Проводят измерение спектра гамма-излучения источника. Время экспозиции выбирают из условия, чтобы число импульсов в пике полного поглощения гамма-квантов с энергией 59,54 кэВ было не менее 10000.
- 4.4.4 С помощью ПО «Прогресс-5» определяют полную ширину на полувысоте (ПШПВ, кэВ) пика полного поглощения источника абсолютное энергетическое разрешение в пике полного поглощения.
- 4.4.5 Проводят операции 4.4.2 4.4.4 для источника из набора ОСГИ с радионуклидом 152 Eu с энергией 121,78 кэВ.
- 4.4.6 Результат поверки считают положительным, если полученные значения абсолютного энергетического разрешения, кэВ, не более:
 - в пике полного поглощения 59,54 кэВ (²⁴¹Am) 15;
 - в пике полного поглощения 121,78 кэВ (¹⁵²Eu) 22.

4.5 Определение относительного энергетического разрешения в пике полного поглощения для БДКС-25-02-2A

- $4.5.1~ При поверке используют источники ОСГИ-А (рабочие эталоны 2-го разряда) с радионуклидом <math>^{137}{\rm Cs}.$
- 4.5.2 На блок детектирования БДКС-25-02-2А устанавливают источник из набора ОСГИ-А с радионуклидом 137 Cs.

Активность источника должна быть такой, чтобы интегральная загрузка спектрометра не превышала $5000 \, \mathrm{c}^{\text{-1}}$

4.5.3 Проводят измерение спектра гамма-излучения источника. Время экспозиции выбирают из условия, чтобы число импульсов в пике полного поглощения гамма-квантов с энергией 661,7 кэВ было не менее 10000.

- 4.5.4 С помощью ПО «Прогресс-5» определяют полную ширину на полувысоте (ПШПВ, кэВ) пика полного поглощения энергии 661,7 кэВ.
 - 4.5.5 Рассчитывают относительное энергетическое разрешение по формуле (3)

$$R = \frac{\Pi \coprod \Pi B}{59.54} \cdot 100 \% \tag{3}$$

4.5.6 Рассчитывают относительное энергетическое разрешение по формуле (4)

$$R = \frac{\Pi \coprod \Pi B}{661.7} \cdot 100 \% \tag{4}$$

4.5.7 Результат поверки считают положительным, если полученное значение относительного энергетического разрешения не превышает 8,0 %.

4.6 Определение относительной эффективности регистрации в пике полного поглощения

- 4.6.1 При определении эффективности регистрации гамма квантов от точечного источника источник располагают на поверхности детектора на его оси. В Свидетельстве о поверке приводят описание геометрии измерения эффективнсти регистрации. При периодической поверке проверяют сохранность эффективности регистрации в геометрии первичной поверки.
- 4.6.2 При поверке используют источники из набора ОСГИ-А (рабочие эталоны 2-го разряда) со следующими радионуклидами:

 241 Am и 152 Eu — для блока детектирования БДКС-25-02-01A;

- 241 Am. 152 Eu и 137 Cs для блока детектирования БДКС-25-02-02A.
- 4.6.3 На блок детектирования БДКС-25-02-01A устанавливают источник из комплекта ОСГИ-A с радионуклидом ²⁴¹Am. Активность источника должна быть такой, чтобы интегральная загрузка спектрометра не превышала $5000 \, \mathrm{c}^{-1}$.
- 4.6.4 Проводят измерение спектра гамма-излучения источника. Время экспозиции устанавливают из условия, чтобы число импульсов в пике полного поглощения гамма-квантов с энергией 59,54 кэВ было не менее 10000. Спектр сохраняют до последующей обработки. Повторяют измерения 10 раз.
- 4.6.5 Убирают источник и проводят измерение спектра фона при том же времени экспозиции, сохраняют спектр фона.
- 4.6.6 Из спектров источника гамма-излучения радионуклида ²⁴¹Ат вычитают спектр фона и определяют количество импульсов в пике полного поглощения гамма-излучения энергии 59,54 кэВ в каждом спектре.
- 4.6.7 Рассчитывают эффективность регистрации ε_i , в пике полного поглощения гамма-излучения энергии 59,54 кэВ источника из радионуклида ²⁴¹Ат типа ОСГИ-А по формуле (5):

$$\varepsilon_i = \frac{N_i}{t \cdot A \cdot p},\tag{5}$$

где N_i - количество импульсов в пике полного поглощения, полученное в результате обработки i-го спектра по пункту 5.6.6, c^{-1} ;

- A активность источника радионуклида на момент измерения, (паспортное значение с учетом поправки на радиоактивный распад), Бк;
- p вероятность выхода квантов (квантовый выход) на один акт распада радионуклида, квант/расп;

- t время набора спектра при измерении источника гамма-излучения радионуклида, с.
- 4.6.8 Вычисляют средние значения эффективности регистрации $\bar{\varepsilon}$ по выполненным измерениям по формуле (6):

$$\bar{\varepsilon} = \frac{\sum \varepsilon_i}{10},\tag{6}$$

4.6.9 Погрешность определения вычисляют следующим образом. Оценивают относительную величину среднего квадратического отклонения по формуле (7):

$$\delta_{\bar{\varepsilon}} = \frac{1}{\bar{\varepsilon}} \cdot \sqrt{\frac{\sum (\varepsilon_i - \bar{\varepsilon})^2}{9 \cdot 10}} \cdot 100, \%$$
 (7)

Границы абсолютной погрешности определения эффективности для 95 % доверительного интервала при 10 наблюдениях (8):

$$\Delta = \frac{\bar{\varepsilon}}{100} \cdot \frac{(\varepsilon_{A0} + t_m \cdot \delta_{\bar{\varepsilon}}) \cdot \sqrt{\delta_{\bar{\varepsilon}}^2 + \frac{\delta_{A0}^2}{3}}}{(\frac{\delta_{A0}}{\sqrt{3}} + \delta_{\bar{\varepsilon}})}, \text{ имп./фотон}$$
(8)

где δ_{A0} — относительная погрешность аттестации активности эталонного источника (из свидетельства на источник), %;

 t_m — коэффициент Стьюдента для m наблюдений и P=0,95 (для 10 наблюдений t_{I0} =2,3).

- 4.6.10 При первичной поверке результат эффективности регистрации и погрешность ее определения заносят в свидетельство о поверке с описанием геометрии измерения.
- 4.6.11 Результат периодической поверки считают положительным, если полученное значение эффективности удовлетворяет условию:

$$|\bar{\varepsilon} - \varepsilon_0| \le \sqrt{\Delta^2 + \Delta_0^2} \tag{9}$$

где $\bar{\varepsilon}$ и ε_0 — соответственно, измеренное и определенное при первичной поверке значение эффективности, имп./фотон;

 Δ и Δ_0 - соответственно, погрешности определения $\bar{\mathcal{E}}$ и ε_0 , имп./фотон

- 4.6.12 Проводят операции 5.6.3 5.6.9 для источника ОСГИ-А с радионуклидом 152 Eu в пике полного поглощения с энергией 121,78 кэВ.
- 4.6.13 Проводят операции 5.6.3 5.6.9 для блока детектирования БДКС-25-02-02A для источников ОСГИ-A с радионуклидами 241 Am (энергия 59,54 кэВ) и 137 Cs (энергия 661,7 кэВ).
- 4.6.14 Средние значения эффективности регистрации $\bar{\varepsilon}$ и абсолютной погрешности определения эффективности вносят в свидетельство о поверке.
 - 4.6.15 Результат поверки считают положительным, если:
 - 1) эффективность регистрации в пике полного поглощения, не менее: для блока детектирования БДКС-25-02-01А
 - 0,3 для пика полного поглощения 59,54 кэВ (²⁴¹Am);
 - 0,2 для пика полного поглощения 121,78 кэВ (152 Eu).

для блока детектирования БДКС-25-02-02А

- 0,3 для пика полного поглощения 59,54 кэВ (²⁴¹Am);
- 0,2 для пика полного поглощения 121,78 кэВ (¹⁵²Eu).
- 0,1 для пика полного поглощения 661,7 кэВ (137 Cs).
- 2) при периодической поверке дополнительно выполняется условие п. 5.6.11.

5 Оформление результатов поверки

- 5.1 Все результаты заносятся в протокол поверки. Рекомендуемая форма протокола поверки приведена в приложении A.
- 5.2 При положительных результатах первичной поверки или поверки после ремонта выдается свидетельство о поверке установленной формы.
- 8.3 При положительных результатах периодической выдается свидетельство о поверке установленной формы.
- 5.4 На оборотной стороне свидетельства о поверке указывают следующие результаты, полученные в ходе поверки:
 - скорость счета от контрольного источника;
 - результаты измерения фона;
 - диапазон энергий;
- относительную погрешность характеристики преобразования (интегральную нелинейность);
 - абсолютное (относительное) энергетическое разрешение;
 - описание геометрии измерения эффективности регистрации;
 - эффективность регистрации в пике полного поглощения гамма-излучения.
 - 5.5 Знак поверки наносится на свидетельство о поверке.
- 5.6 При отрицательных результатах поверки выдается извещение о непригодности «МУЛЬТИРАД-гамма» или делается соответствующая запись в технической документации и применение его по назначению не допускается.

Приложение A (рекомендуемое)

Протокол поверки

зав. номер,	
выпущенный (отремонтированный)	
(дата вып	пуска или ремонта)
(предприятие-изготовитель или ремонтное предпри	иятие)
принадлежащий	
(наименование организации)	
Регистрационный номер в Федеральном инф	рормационном фонде по обеспечении
единства измерений:	
А.2 Условия поверки:	
Температура окружающего воздуха	°C;
	кПа;
	мкЗв/ч.
	ование эталонного источника
свидетельство о поверке №	, действительно до г.
- психрометр	, зав. №
барометр	
- дозиметр гамма-излучения	, зав. №
А.4 Результат поверки	
А.4.1 Результат внешнего осмотра	
А.4.2 Результаты опробования	
А.4.2.1 Идентификационные данные	
Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	
Номер версии (идентификационный номер) ПО	
Пифровой илентификатор ПО	

А.4.2.2 Результаты энергетической калибровки

№ измерения	Позиция репера	Позиция репера	Контрольная
	кэВ	кэВ	скорость счета

А.4.2.3 Результаты измерения фона

	Скорости счета в интервалах, имп/с							
	1	2	3	4	5	6	7	8
Фоновый спектр								
Фоновый спектр, измеренный ранее								

А.4.3 Результаты определения относительной погрешности характеристики преобразования (интегральной нелинейности)

Радионуклид	Энергия пика	Положение центроиды,	теристики пр	огрешность харак- еобразования нелинейность)	
	кэВ	канал	Измеренная	Предельное значение	
⁵⁷ Co					
²⁴¹ Am					
¹³⁷ Cs				1,0 %	
⁶⁰ Co					
¹⁵² Eu					

А.4.4 Результаты определения абсолютного энергетического разрешения для блока детектирования

Радионуклид	Энергия пика, кэВ	Результаты измерений абсолютного энергетического разрешения, кэВ	Нормированное абсолютное энергетическое разрешение, кэВ
²⁴¹ Am	59,5		15
¹⁵² Eu	120,0		22

А.4.5 Результаты определения относительного энергетического разрешения для блока детектирования БДКС-25-02-2А

Радионуклид	Энергия пика, кэВ	Результаты измерений относительного энергетического разрешения, кэВ	Относительное энергетиче- ское разрешение, %
¹³⁷ Cs	661,7		8,0

А.4.6 Результаты определения относительной эффективности регистрации в пике полного поглощения для блока детектирования _____

Таблица А.4.6.1

Nº	Число отсчетов в ППП 59,5 кэВ	Живое время, с		тносительной егистрации в ППП
	ППП 59,5 кэВ (²⁴¹ Am)		определенное	нормированное
1				
2				
3				
4				
5				не менее
6				0,30
7				
8				_
9				
10				
			cp.	

Таблица А.4.6.2

Э	ффективности р	егистрации в П	ПП 59,5 кэВ (²	⁴¹ Am), имп/фотс)H
Первична	я поверка	Очередна	я поверка	$ \bar{\varepsilon} - \varepsilon_0 \le$	$\sqrt{\Delta^2 + \Delta_0^2}$
$arepsilon_0$	Δ_0^2	$ar{arepsilon_i}$	Δ_i^2	$ \bar{\varepsilon} - \varepsilon_0 $	$\sqrt{\Delta^2 + \Delta_0^2}$

Таблица А.4.6.3

No	Число отсчетов в ППП 120,0 кэВ	Живое время, с		тносительной егистрации в ППП
	ППП 120,0 кэВ (¹⁵² Eu)		определенное	нормированное
1				
2				
3				
4				
5				не менее
6			-	0,20
7				J 0,20
8				
9				
10				
<u></u>			cp.	

Таблица А.4.6.4

	Эффективности	регистрации в	ППП 120,0 кэВ	(¹⁵² Eu), имп/фот	гон
Первичн	ая поверка	Очередна	я поверка	$ \bar{\varepsilon}-\varepsilon_0 $:	$\leq \sqrt{\Delta^2 + \Delta_0^2}$
$arepsilon_0$	Δ_0^2	$ar{arepsilon_i}$	Δ_i^2	$ \bar{\varepsilon} - \varepsilon_0 $	$\sqrt{\Delta^2 + \Delta_0^2}$

Таблица А.4.7.5

N₂	Число отсчетов в ППП 661.7 кэВ	Живое время, с	I .	тносительной егистрации в ППП
	ППП 661,7 кэВ (¹³⁷ Cs)		определенное	нормированное
1				
2				
3				
4				
5				не менее
6				0,10
7				
8				
9				
10				_
			cp.	

Таблица А.4.7.6

	Эффективности	регистрации в	ППП 661,7 кэВ	(¹³⁷ Cs), имп/фо	тон
 Первичн	ая поверка	Очередная поверка		$ \bar{\varepsilon} - \varepsilon_0 \le \sqrt{\Delta^2 + \Delta_0^2}$	
$arepsilon_0$	Δ_0^2	$ar{arepsilon_i}$	Δ_i^2	$ \bar{\varepsilon} - \varepsilon_0 $	$\sqrt{\Delta^2 + \Delta_0^2}$

(расшифровка подписи)	ключение		
(расшифровка подписи)	Поверитель		
	• -	(личная подпись)	(расшифровка подписи)
	год, месяц, ч	<u> </u>	(расшифровка подписи)