ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учёта электроэнергии ООО «Белая птица - Белгород» ПС Крейда

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Белая птица - Белгород» ПС Крейда (далее - АИИС КУЭ) предназначена для измерения электроэнергии (мощности) производимой, потребляемой на собственные нужды и отпускаемой потребителям ООО «Белая птица - Белгород», а также регистрации и хранения параметров электропотребления, формирования отчетных документов и информационного обмена с субъектами оптового рынка электроэнергии и мощности (ОРЭМ).

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую систему с централизованным управлением и распределенной функцией измерения, состоящая из четырех измерительных каналов.

АИИС КУЭ включает в себя следующие уровни:

1-ый уровень - включает в себя измерительные трансформаторы тока (ТТ) по ГОСТ 7746-2001, вторичные измерительные цепи тока и напряжения, многофункциональные микропроцессорные счетчики электроэнергии (счетчики) с цифровыми выходными интерфейсами RS-485 для измерения активной и реактивной энергии;

2-й уровень - информационно-вычислительный комплекс (ИВК) обеспечивает синхронизацию шкалы времени ИВК, сбор информации (результаты измерений, журнал событий), обработку данных и их архивирование, хранение информации в базе данных, доступ к информации и ее передачу в организации-участники ОРЭМ.

ИВК включает в себя: сервер коммуникационный, сервер архивов и сервер баз данных; устройство синхронизации системного времени (УССВ); программное обеспечение (ПО) «АльфаЦЕНТР», автоматизированные рабочие места (АРМ); каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации

Каналы связи между измерительно-информационными точками учета и ИВК образуют измерительные каналы (ИК) АИИС КУЭ.

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности вычисляется для интервалов времени 30 мин (умножение на коэффициенты трансформации осуществляется в сервере ИВК АИИС КУЭ).

Цифровой сигнал с выходов счетчиков по интерфейсу RS-485 поступает через GSM модемы в ИВК, где осуществляется автоматизированный сбор, контроль и учет показателей и режимов потребления электроэнергии, передача накопленных данных по каналам передачи данных.

ИВК предназначен для обеспечения выполнения задач автоматического сбора, диагностики, обработки и хранения информации об измеренной электроэнергии, а также обеспечения интерфейсов доступа к информации. Учетная информация, передаваемая внешним пользователям через Internet (основной канал связи) и GSM-модем (резервный канал связи), отражает 30-минутные результаты измерения потребления электроэнергии по точке учета. Передача информации реализована с использованием электронных документов в виде макетов в формате XML 51070 и 80020.

Система обеспечения единого времени (СОЕВ). В АИИС КУЭ синхронизация часов производится от эталона, в качестве которого выступает GPS приемник.

ИВК, с периодом в 30 мин, выполняет коррекцию своих внутренних часов таким образом, чтобы расхождение с часами УССВ было не более ± 1 с.

От ИВК синхронизируются внутренние часы счетчиков 1 раз в сутки при опросе по GSM связи. В случае расхождения часов счетчиков и ИВК более чем на \pm 1 с, производится коррекция часов счетчиков.

Ход часов компонентов АИИС КУЭ не более ± 5 с/сут.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1. Влияние математической обработки на результаты измерений не превышает ±1 единицы младшего разряда.

Таблипа 1 - Идентификационные данные ПО

таолица т идентификационные данные по			
Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	«АльфаЦЕНТР»		
Номер версии (идентификационный номер) ПО	15.07.03		
Цифровой идентификатор ПО:			
Программа - планировщик опроса и передачи	434b3cd629aabee2c888321c997356b2		
данных Amrserver.exe			
Драйвер ручного опроса счетчиков и УСПД	fc1ec6f4a4af313a00efb3af4b5e8602		
Amrc.exe			
Драйвер автоматического опроса счетчиков и	0c5fc70674f0d1608352431e9dd3c85d		
УСПД Amra.exe			
Драйвер работы с БД Cdbora2.dll	234b8084f22314cc2c22841cf6e42f40		
Библиотека шифрования пароля счетчиков	0939ce05295fbcbbba400eeae8d0572c		
encryptdll.dll			
Библиотека сообщений планировщика опросов	b8c331abb5e34444170eee9317d635cd		
alphamess.dll			

Метрологические и технические характеристики

Технические характеристики АИИС КУЭ приведены в таблице 2, которая содержит перечень измерительных компонентов ИК АИИС КУЭ, их метрологические характеристики с указанием наименования присоединений.

В таблице 3 приведены метрологические характеристики ИК АИИС КУЭ.

Таблица 2 - Перечень измерительных компонентов ИК АИИС КУЭ и их характеристики

	Канал измерений Средство измерений				·· P	
№ ИК	Наименование объекта учета, диспетчерское наименование присоединения	Вид СИ, класс точности, коэффициент трансформации, № Госреестра СИ	Обозначение, тип	Заводской номер	Ктт [.] Ксч= Красч.	Наименование, измеряемой величины
1	2	3	4	5	6	7
1	ТП-1255 6/0,4кВ, РУНН- 0,4кВ, 1 с.ш., КЛ 0,4 кВ №1 от ТП-1255	ТТ КТтт=0,5 Ктт= 2000/5 № 28139-07 КТсч=0,5S/1,0 Ксч=1 № 64450-16	AТТИ-125ВТТИ-125СТТИ-125ПСЧ-4ТМ.05МК.04	D16540 D16541 D16528 1107161061	400	Ток первичный, I Энергия активная, W _P Энергия реактивная, W _Q Календарное время
2	ТП-1255 6/0,4кВ, РУНН- 0,4кВ, 2 с.ш., КЛ 0,4 кВ №2 от ТП-1255	TT КТтт=0,5 Ктт= 2000/5 № 28139-07 КТсч=0,5S/1,0 Ксч=1 № 64450-16	AТТИ-125ВТТИ-125СТТИ-125ПСЧ-4ТМ.05МК.04	D16526 D16527 D16525 1109161562	400	Ток первичный, I Энергия активная, W _P Энергия реактивная, W _Q Календарное время
3	ТП-1254 6/0,4кВ, РУНН- 0,4кВ, 1 с.ш., КЛ 0,4 кВ №1 от ТП-1254	TT KTтт=0,5 Kтт= 2000/5 № 28139-07 KTсч=0,5S/1,0 Kсч=1 № 64450-16	AТТИ-125ВТТИ-125СТТИ-125ПСЧ-4ТМ.05МК.04	D16520 D16519 D16521 1109161522	400	Ток первичный, I Энергия активная, W _P Энергия реактивная, W _Q Календарное время

Продолжение таблицы 2

1	2	3	3 4		5	6	7
4	ТП-1254 6/0,4кВ, РУНН- 0,4кВ, 2 с.ш., КЛ 0,4 кВ №2 от ТП-1254	КТсч=0,5S/1,0 Ксч=1 № 64450-16		ТТИ-125 ТТИ-125 ТТИ-125	D16524 D16522 D16523 1109161508	400	Ток первичный, I Энергия активная, W _P Энергия реактивная, W _Q
		Счет					Календарное время

Примечания:

КТ - класс точности средства измерений.

Ксч - коэффициент трансформации счетчика электроэнергии.

Ктт - коэффициент трансформации трансформатора тока.

Допускается замена счетчиков и ТТ на аналогичные утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в таблице 3. Замена оформляется актом в установленном на предприятии порядке. Акт хранится совместно с настоящим описанием типа как его неотъемлемая часть.

Таблица 3 - Пределы допускаемых относительных погрешностей измерения активной/ реактивной (d_{WP}/d_{WQ}) электроэнергии (мощности) для рабочих условий эксплуатации АИИС КУЭ при доверительной вероятности 0,95

ку у при доверительной вероитности 0,75							
d_{WP} , %							
No	КТт			Значение	для диапазона	для диапазона	для диапазона
ИК	-	KT_{TH}	КТСЧ	_	$1(5) \% \pounds I/I_{HOM} < 20 \%$	$20 \% \text{£I/I}_{\text{HOM}} < 100 \%$	$100\% \text{£I/I}_{\text{HOM}} \text{£} 120\%$
MIX	T			cosj	$W_{P1(5)} \% EW_{P} < W_{P20} \%$	$W_{P20 \%} \xi W_{P} \!\! < \!\! W_{P100 \%}$	W_{P100} % $EW_{P}EW_{P120\%}$
					$d_{\mathrm{WP}},\!\%$		
				1,0	<u>+</u> 2,2	<u>+</u> 1,7	<u>+</u> 1,6
1-4	0,5	-	0.5s	0,8	<u>+</u> 3,3	<u>+</u> 2,3	<u>+</u> 2,0
		0,5	<u>+</u> 5,8	<u>+</u> 3,6	<u>+</u> 3,0		
	$d_{\mathrm{WQ}},\!\%$						
Mo				Значение	для диапазона	для диапазона	для диапазона
№ ИК	KT_{TT}	KT_{TH}	КТСЧ	cosj	$1(5) \% £I/I_{HOM} < 20 \%$	$20 \% \text{£I/I}_{\text{HOM}} < 100 \%$	100%£I/I _{HOM} £120%
riix					$W_{Q1(5)\%} EW_{Q} < W_{Q20\%}$	$W_{Q20\%} EW_{Q} < W_{Q100\%}$	$W_{\mathrm{Q}100\%}$ £ W_{Q} £ $W_{\mathrm{Q}120\%}$
1-4	0,5		1	0,8	+5,7	+3,4	+2,9
1-4	0,5	-	1	0,5	+4,1	+2,7	+2,5

I/In - значение первичного тока в сети в процентах от номинального; $W_{P1(5)}$ % $(W_{Q1(5)})$ - W_{P120} % $(W_{Q120}$ %) - значения электроэнергии при соотношении I/In равном от 1(5) до 120 %.

Условия эксплуатации измерительных компонентов ИК АИИС КУЭ соответствуют требованиям, распространяющихся на них НД:

- трансформаторы тока по ГОСТ 7746-2001 и ЭД;
- счётчики электроэнергии для измерения активной и реактивной энергии по ГОСТ 31819.22-2012, ГОСТ 31819.23-2012 и ЭД.

Таблица 4 - Условия эксплуатации АИИС КУЭ

Tuomiqu 1 5 enobin skensiyutuqini 7 titi C K5 5					
Наименование параметров,	Допускаемые границы рабочих условий применения СИ				
влияющих величин	для измерительного канала				
	Счетчики	TT			
1	2	3			
Сила переменного тока, А	от $I_{ m 2_{MИH}}$ до $I_{ m 2_{MAKC}}$	от $I_{1_{ m MHH}}$ до 1,2 $I_{1_{ m HOM}}$			
Напряжение переменного тока, В	от 0,8 $U_{ m 2hom}$ до 1,15 $U_{ m 2hom}$	-			
Коэффициент мощности	от 0,5 _{инд.} до 0,8 _{емк.}	от 0,5 _{инд.} до 0,8 _{емк.}			
(cos j)	от о,оинд. до о,оемк.	от органд. До оргемк.			
Частота, Гц	от 47,5 до 52,5	от 47,5 до 52,5			
Температура окружающего					
воздуха по ЭД, °С	от -40 до +60	от -40 до +55			
Индукция внешнего магнитного	0,5				
поля для счетчиков, мТл, не более	0,3	-			
Мощность вторичной нагрузки ТТ		от 0,25S _{2ном} до 1,0S _{2ном}			
(при $\cos j_2 = 0.8_{\text{инд}}$)	_	01 0,233 _{2ном} до 1,03 _{2ном}			

Таблица 5 - Параметры надежности средств измерений АИИС КУЭ

Наименование характеристики	Значение		
Среднее время наработки на отказ, ч, не менее:			
Трансформаторы тока	30 000		
Счетчик электроэнергии	165 000		
ИБП APC Smart-UPS RT 8000VA RM	35 000		
Модем GSM и коммуникационное оборудование	50 000		
Сервер	50 000		
Срок службы, лет:			
Трансформаторы тока;	25		
Счетчики электроэнергии;	30		
Коммуникационное и модемное оборудование	10		

Среднее время восстановления АИИС КУЭ при отказе не более 4 ч.

Надежность системных решений:

- резервирование каналов связи на уровне ИИК-ИВК, информация о результатах измерений может передаваться внешним пользователям по электронной почте;
- мониторинг состояния АИИС КУЭ;
- удалённый доступ;
- возможность съёма информации со счётчика автономным способом;
- визуальный контроль информации на счётчике.

Регистрация событий:

- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике (сервере).
- Защищенность применяемых компонентов

Механическая защита от несанкционированного доступа и пломбирование:

- электросчётчика;
- промежуточных клеммников вторичных цепей;
- сервера.

Защита информации на программном уровне:

- установка пароля на счетчик;
- установка пароля на сервере.

Глубина хранения информации в счетчиках, не менее, 45 сут., на сервере, не менее, 3,5 лет.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 6.

Таблица 6 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество
Трансформаторы тока	ТТИ-125	12 шт.
Счетчики электроэнергии	ПСЧ-4ТМ.05МК.04	4 шт.
Устройство синхронизации системного	УССВ	1 шт.
времени		
Сервер сбора и БД	Intel	1 шт.
Паспорт-формуляр	ПСК.2017.01.АСКУЭ.31-ПФ	1 экз.
Технорабочий проект	ПСК.2017.01.АСКУЭ.31-ТРП	1 экз.
Методика поверки	-	1 экз.

Поверка

осуществляется по документу МП 68744-17 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии ООО «Белая птица - Белгород» ПС Крейда. Методика поверки», утвержденному ФБУ «Воронежский ЦСМ» 4 августа 2017 г.

Основные средства поверки:

- прибор сравнения КНТ-03 (рег № 24719-03);
- радиочасы МИР РЧ-01 (рег № 27008-04);
- измеритель многофункциональный характеристик переменного тока Ресурс-UF2-ПТ (рег № 29470-05);
 - средства поверки измерительных трансформаторов тока по ГОСТ 8.217-2003;
 - средства поверки измерительных трансформаторов напряжения по ГОСТ 8.216-2011;
- средства поверки многофункциональных микропроцессорных счетчиков электрической энергии типа ПСЧ-4ТМ.05МК.04 в соответствии с документом ИЛГШ.411152.167 РЭ.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Учет электроэнергии и мощности на энергообъектах. Методика измерений количества электроэнергии (мощности) с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Белая птица - Белгород» ПС Крейда». Свидетельство об аттестации методики измерений № 68/12-01.00272-2017 от 07.08.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Белая птица - Белгород»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

Изготовитель

Акционерное Общество «Первая сбытовая компания» (АО «Первая сбытовая компания»)

ИНН 3123200083

Адрес: 308000, г. Белгород, ул. Князя Трубецкого, д. 37

Телефон: +7 (472) 233-47-18 Факс: +7 (472) 233-47-28

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Воронежской области» (ФБУ «Воронежский ЦСМ»)

Адрес: 394018, г. Воронеж, ул. Станкевича, 2

Телефон (факс): +7 (473) 220-77-29

Аттестат аккредитации ФБУ «Воронежский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311949 от 03.11.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2017 г.