ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) филиала ПАО «РусГидро» - «Воткинская ГЭС»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) филиала ПАО «РусГидро» - «Воткинская ГЭС» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, потребленной за установленные интервалы времени технологическим объектом, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (далее – ИИК), включающие в себя измерительные трансформаторы тока (далее – ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее – ТН) по ГОСТ 1983-2001 и счетчики электроэнергии (далее – счетчики) в режиме измерений активной электроэнергии по ГОСТ Р 52323-2005, в режиме измерений реактивной электроэнергии по ГОСТ Р 52425-2005, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2 – 4.

2-й уровень – информационно-вычислительный комплекс (далее – ИВК), включающий в себя серверы баз данных (далее – БД), серверы синхронизации времени ССВ-1Г (далее – ССВ-1Г), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации, автоматизированные рабочие места персонала (далее – APM) и программное обеспечение (далее – ПО) «Пирамида 2000».

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются усредненные значения активной мощности и среднеквадратические значения напряжения и тока за период 0,02 с. По вычисленным среднеквадратическим значениям тока и напряжения производится вычисление полной мощности за период. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на верхний уровень системы, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации – участники оптового рынка электрической энергии и мощности, в том числе в АО «АТС», АО «СО ЕЭС» и смежным субъектам, через каналы связи в виде

XML-файлов установленных форматов в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности с использованием электронной подписи субъекта рынка. Передача результатов измерений, состояния средств и объектов измерений по группам точек поставки производится с сервера баз данных настоящей системы.

АИИС КУЭ имеет систему обеспечения единого времени (далее — СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы (ИИК и ИВК). АИИС КУЭ оснащена ССВ-1Г. Пределы допускаемой абсолютной погрешности привязки переднего фронта выходного импульса частотой 1 Гц к шкале времени UTC в режиме синхронизации по сигналам глобальной навигационной спутниковой системы ГЛОНАСС/GPS составляют ±110 нс. Сервер БД, расположенный в центре сбора и обработки информации (далее — ЦСОИ) филиала ПАО «РусГидро» - «Воткинская ГЭС», периодически (не реже чем 1 раз в 1 час) сравнивает свое системное время с ССВ-1Г, корректировка часов сервера БД осуществляется независимо от наличия расхождения. Сличение показаний часов счетчиков и сервера БД производится во время сеанса связи со счетчиками. Корректировка часов осуществляется независимо от наличия расхождения, но не чаще 1 раза в сутки.

Задержки в каналах связи составляют не более 0,2 с.

Погрешность хода часов АИИС КУЭ не превышает ±5 с/сут.

Время (дата, часы, минуты, секунды) коррекции часов счетчика электроэнергии и сервера БД отражаются в журналах событий. Факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую были скорректированы указанные устройства, отражаются в журнале событий сервера АИИС КУЭ.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2000», в состав которого входят программы, указанные в таблице 1. ПО обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО.

Таблица 1 – Метрологические значимые модули ПО

Идентификационные признаки	Значение
Идентификационные наименования	CalcClients.dll; CalcLeakage.dll; CalcLosses.dll;
модулей ПО	Metrology.dll; ParseBin.dll; ParseIEC.dll;
	ParseModbus.dll; ParsePiramida.dll; SynchroNSI.dll;
	VerifyTime.dll
Номер версии (идентификационный номер) ПО	3.0
Цифровой идентификатор ПО	e55712d0b1b219065d63da949114dae4 b1959ff70be1eb17c83f7b0f6d4a132f d79874d10fc2b156a0fdc27e1ca480ac 52e28d7b608799bb3ccea41b548d2c83 6f557f885b737261328cd77805bd1ba7 48e73a9283d1e66494521f63d00b0d9f c391d64271acf4055bb2a4d3fe1f8f48 ecf532935ca1a3fd3215049af1fd979f 530d9b0126f7cdc23ecd814c4eb7ca09 1ea5429b261fb0e2884f5b356a1d1e75
Алгоритм вычисления цифрового идентификатора ПО	MD5

ПО «Пирамида 2000» аттестовано на соответствие требованиям нормативной документации, свидетельство об аттестации № АПО-209-15 от 26 октября 2011 года, выданное ФГУП «ВНИИМС».

Пределы допускаемой дополнительной абсолютной погрешности по электроэнергии, получаемой за счет математической обработки измерительной информации, поступающей от счетчиков, составляют 1 единицу младшего разряда измеренного значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии, а также для разных временных (тарифных) зон не зависят от способов передачи измерительной информации и определяются классами точности применяемых счетчиков электрической энергии и измерительных трансформаторов.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3 и 4, нормированы с учетом ПО.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблицах 2 – 4.

Таблица 2 – Состав 1-го и 2-го уровня измерительных каналов АИИС КУЭ

зр ИК	Наименование	(Вид		
Номер	точки измерений	TT	TH	Счётчик	электроэнергии
1	2	3	4	5	6
1	Воткинская ГЭС, КРУЭ-500 кВ, яч. 1, ВЛ-500 кВ «Емелино»	JK ELK CB3 2000/1	SU 550/B4 L; CPB 550 500000/√3:100/√3	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная
	BJ1 300 KB «EMCJIIIIO»	Кл. т. 0,2S	Кл. т. 0,2	KJI. 1. 0,25/0,3	реактивная
2	Воткинская ГЭС, КРУЭ-500 кВ, яч. 2,	JK ELK CB3 2000/1	SU 550/B4 L; CPB 550	CЭТ-4TM.03M.16	активная
	ВЛ-500 кВ «Кармановская ГРЭС»	Кл. т. 0,2S	500000/√3:100/√3 Кл. т. 0,2	Кл. т. 0,2S/0,5	реактивная
3	Воткинская ГЭС, КРУЭ-500 кВ, яч. 3,	JK ELK CB3 2000/1	SU 550/B4 L; CPB 550	CЭT-4TM.03M.16	активная
3	ВЛ-500 кВ «Вятка»	2000/1 Кл. т. 0,2S	500000/√3:100/√3 Кл. т. 0,2	Кл. т. 0,2S/0,5	реактивная
4	Воткинская ГЭС, ОРУ-220 кВ, яч. 5,	TG245 1200/1	CPB 245 220000/√3:100/√3	СЭТ-4ТМ.03М.16	активная
	ВЛ-220 кВ «Светлая»	Кл. т. 0,2S	Кл. т. 0,2	Кл. т. 0,2S/0,5	реактивная
5	Воткинская ГЭС, ОРУ-220 кВ, яч. 7,	TG245 1200/1	CPB 245 220000/√3:100/√3	СЭТ-4ТМ.03М.16	активная
	ВЛ-220 кВ «Каучук 1»	Кл. т. 0,2S	Кл. т. 0,2	Кл. т. 0,2S/0,5	реактивная
6	Воткинская ГЭС, ОРУ-220 кВ, яч. 10,	TG245 1200/1	CPB 245 220000/√3:100/√3	CЭT-4TM.03M.16	активная
U	ВЛ-220 кВ «Каучук 2»	Кл. т. 0,2S	Кл. т. 0,2	Кл. т. 0,2S/0,5	реактивная
7	Воткинская ГЭС, ОРУ-220 кВ, яч. 12,	TG245 1200/1	CPB 245 220000/√3:100/√3	CЭТ-4TM.03M.16	активная
	ВЛ-220 кВ «Ижевск 1»	Кл. т. 0,2S	Кл. т. 0,2	Кл. т. 0,2S/0,5	реактивная

1	2	3	4	5	6
8	Воткинская ГЭС, ОРУ-220 кВ, яч. 11, ВЛ-220 кВ «Ижевск 2»	TG245 1200/1 Кл. т. 0,2S	СРВ 245 220000/√3:100/√3 Кл. т. 0,2	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная
9	Воткинская ГЭС, ОРУ-110 кВ, яч. 21, ВЛ-110 кВ «КШТ-1»	TG145 1500/1 Кл. т. 0,2S	СРВ 123 110000/√3:100/√3 Кл. т. 0,2	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная
10	Воткинская ГЭС, ОРУ-110 кВ, яч. 22, ВЛ-110 кВ «КШТ-2»	TG145 1500/1 Кл. т. 0,2S	СРВ 123 110000/√3:100/√3 Кл. т. 0,2	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная
11	Воткинская ГЭС, ОРУ-110 кВ, яч. 1, ВЛ-110 кВ «Светлая»	TG145 1500/1 Кл. т. 0,2S	СРВ 123 110000/√3:100/√3 Кл. т. 0,2	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная
12	Воткинская ГЭС, ОРУ-110 кВ, яч. 2, ВЛ-110 кВ «Ивановка»	TG145 1500/1 Кл. т. 0,2S	СРВ 123 110000/√3:100/√3 Кл. т. 0,2	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная
13	Воткинская ГЭС, ОРУ-110 кВ, яч. 4, ВЛ-110 кВ «Каучук»	TG145 1500/1 Кл. т. 0,2S	СРВ 123 110000/√3:100/√3 Кл. т. 0,2	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная
14	Воткинская ГЭС, ОРУ-110 кВ, яч. 6, ВЛ-110 кВ «ЧаТЭЦ»	TG145 1500/1 Кл. т. 0,2	СРВ 123 110000/√3:100/√3 Кл. т. 0,2	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная
15	Воткинская ГЭС, ОРУ-110 кВ, яч. 8, ВЛ-110 кВ «Березовка»	TG145 1500/1 Кл. т. 0,2S	СРВ 123 110000/√3:100/√3 Кл. т. 0,2	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная
16	Воткинская ГЭС, ОРУ-110 кВ, яч. 10, ВЛ-110 кВ «Дубовая»	TG145 1500/1 Кл. т. 0,2	СРВ 123 110000/√3:100/√3 Кл. т. 0,2	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная
17	Воткинская ГЭС, ОРУ-110 кВ, яч. 12, ВЛ-110 кВ «Водозабор 2»	TG145 1500/1 Кл. т. 0,2	СРВ 123 110000/√3:100/√3 Кл. т. 0,2	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная реактивная

1	2	3	4	5	6
18	Воткинская ГЭС, ОРУ-110 кВ, яч. 13, ВЛ-110 кВ «Водозабор 1»	TG145 1500/1 Кл. т. 0,2	СРВ 123 110000/√3:100/√3 Кл. т. 0,2	СЭТ-4ТМ.03М.16 Кл. т. 0,2S/0,5	активная
19	Воткинская ГЭС, ГГ-1 (13,8 кВ)	IORAZ 6000/5 Кл. т. 0,2	GSES 24D 13800/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная
20	Воткинская ГЭС, ГГ-2 (13,8 кВ)	IORAZ 6000/5 Кл. т. 0,2	GSES 24D 13800/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная
21	Воткинская ГЭС, ГГ-3 (13,8 кВ)	IORAZ 6000/5 Кл. т. 0,2	GSES 24D 13800/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная
22	Воткинская ГЭС, ГГ-4 (13,8 кВ)	IORAZ 6000/5 Кл. т. 0,2	GSES 24D 13800/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная
23	Воткинская ГЭС, ГГ-5 (13,8 кВ)	IORAZ 6000/5 Кл. т. 0,2	GSES 24D 13800/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная
24	Воткинская ГЭС, ГГ-6 (13,8 кВ)	IORAZ 6000/5 Кл. т. 0,2	GSES 24D 13800/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная
25	Воткинская ГЭС, ГГ-7 (13,8 кВ)	IORAZ 6000/5 Кл. т. 0,2	GSES 24D 13800/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная
26	Воткинская ГЭС, ГГ-8 (13,8 кВ)	IORAZ 6000/5 Кл. т. 0,2	GSES 24D 13800/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная
27	Воткинская ГЭС, ГГ-9 (13,8 кВ)	IORAZ 6000/5 Кл. т. 0,2	GSES 24D 13800/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная

1	2	3	4	5	6
28	Воткинская ГЭС, ГГ-10 (13,8 кВ)	IORAZ 6000/5 Кл. т. 0,2	GSES 24D 13800/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная
29	Воткинская ГЭС, Ввод 0,4 кВ, СН 11Т	ТІ 800/5 Кл. т. 0,5	_	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5	активная реактивная
30	Воткинская ГЭС, Ввод 0,4 кВ, СН 12Т	ТІ 800/5 Кл. т. 0,5	_	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5	активная реактивная
31	Воткинская ГЭС, Ввод 0,4 кВ, СН 13Т	ТІ 800/5 Кл. т. 0,5	_	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5	активная реактивная
32	Воткинская ГЭС, Ввод 0,4 кВ, СН 14Т	ТІ 800/5 Кл. т. 0,5	_	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5	активная реактивная
33	Воткинская ГЭС, Ввод 0,4 кВ, СН 15Т	СТ; TAR 800/5 Кл. т. 0,5	_	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5	активная реактивная
34	Воткинская ГЭС, Ввод 0,4 кВ, СН 16Т	TAR 800/5 Кл. т. 0,5	_	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5	активная реактивная
35	Воткинская ГЭС, Ввод 0,4 кВ, СН 17Т	ТІ 800/5 Кл. т. 0,5	_	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5	активная реактивная
36	Воткинская ГЭС, Ввод 0,4 кВ, СН 18Т	TI 800/5 Кл. т. 0,5	_	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5	активная реактивная
37	Воткинская ГЭС, Ввод 0,4 кВ, СН 19Т	ТІ 600/5 Кл. т. 0,5	_	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5	активная реактивная

1	2	3	4	5	6
38	Воткинская ГЭС, Ввод 0,4 кВ, СН 20Т	TI 800/5 Кл. т. 0,5	ı	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5	активная реактивная
39	Воткинская ГЭС, КРУ-3 6 кВ, яч. 10, КЛ 6 кВ «Фильтровальная 1»	ТОЛ-СЭЩ 200/5 Кл. т. 0,2	ЗНОЛП-6 6300/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная
40	Воткинская ГЭС, КРУ-2 6 кВ, яч. 13, КЛ 6 кВ «Фильтровальная 2»	ТОЛ-СЭЩ 300/5 Кл. т. 0,2	ЗНОЛП-6 6300/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная
41	Воткинская ГЭС, КРУ-1 6 кВ, яч. 7, КЛ 6 кВ «Шлюз 1»	ТОЛ-СЭЩ 150/5 Кл. т. 0,2	ЗНОЛП-6 6300/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная
42	Воткинская ГЭС, КРУ-3 6 кВ, яч. 11, КЛ 6 кВ «Шлюз 2»	ТОЛ-СЭЩ 150/5 Кл. т. 0,2	ЗНОЛП-6 6300/√3:100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	активная реактивная

Таблица 3 - Метрологические характеристики ИК (активная энергия)

Tuosinga 3 Merposiorn lee	1 1	Метрологические характеристики ИК					
		Границы интервала			Границы интервала		
			осительн	ной	OTH	носительн	ной
		0	сновной	İ	погреш	ности изм	иерений
		ПОІ	грешнос	ТИ	в раб	очих усло	ОВИЯХ
Номер ИК	Диапазон тока		вмерений			сплуатаці	
			ветствую			ветствую	
		вероят	гности Р	=0,95	вероя	тности Р	=0,95
			$(\pm\delta)$, %	T		$(\pm\delta)$, %	
		cos φ	cos φ	cos φ	cos φ	cos φ	cos φ
		= 1	= 0,8	= 0,5	= 1	= 0,8	= 0,5
1 – 13; 15	I _{H1} ≤I ₁ ≤1,2I _{H1}	0,5	0,6	0,9	0,8	1,0	1,2
1 13, 13	0,2Ін₁≤І₁<Ін₁	0,5	0,6	0,9	0,8	1,0	1,2
(TT 0,2S; TH 0,2; C4 0,2S)	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	0,6	0,8	1,2	0,8	1,0	1,4
, , , , , , , , , , , , , , , , , , , ,	$0.01 \text{IH}_1 \le I_1 < 0.05 \text{IH}_1$	1,0	1,3	2,0	1,2	1,5	2,2
14; 16 – 18	$I_{H_1} \leq I_1 \leq 1, 2I_{H_1}$	0,5	0,6	0,9	0,8	1,0	1,2
	0,2I _{H1} ≤I ₁ <i<sub>H1</i<sub>	0,6	0,8	1,2	0,8	1,0	1,4
(TT 0,2; TH 0,2; Cч 0,2S)	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	0,9	1,2	2,0	1,1	1,4	2,1
19 - 28; 39 - 42	$I_{H_1} \leq I_1 \leq 1, 2I_{H_1}$	0,7	0,9	1,4	0,9	1,2	1,6
	0,2I _{H1} ≤I ₁ <i<sub>H1</i<sub>	0,8	1,0	1,6	1,0	1,2	1,8
(TT 0,2; TH 0,5; C4 0,2S)	$0,05$ IH ₁ \leq I ₁ $<$ 0,2IH ₁	1,1	1,4	2,3	1,2	1,6	2,4
29 – 38	$I_{H_1} \leq I_1 \leq 1, 2I_{H_1}$	0,6	1,0	1,8	0,8	1,2	1,9
	0,2IH ₁ ≤I ₁ <ih<sub>1</ih<sub>	0,9	1,4	2,6	1,0	1,6	2,7
(TT 0,5; C4 0,2S)	$0,05I_{H_1} \le I_1 < 0,2I_{H_1}$	1,7	2,7	5,2	1,8	2,8	5,3

Таблица 4 – Метрологические характеристики ИК (реактивная энергия)

Метрологические характеристики ИК						
Номер ИК	Диапазон тока	Границы интервала относительной основной погрешности измерений, соответствующие вероятности $P=0,95 (\pm \delta), \%$		Границы относи погре измерений условиях эн соответс вероятно	интервала птельной шности в рабочих ксплуатации, ствующие сти P=0,95	
		$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	
1 – 13; 15	IH ₁ ≤I ₁ ≤1,2IH ₁	1,0	0,8	1,8	1,8	
1 – 13, 13	$0,2I_{H_1} \le I_1 < I_{H_1}$	1,0	0,8	1,8	1,8	
(TT 0,2S; TH 0,2; C4 0,5)	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	1,1	0,9	1,9	1,8	
(11 0,23, 111 0,2, C4 0,3)	$0.02 \text{IH}_1 \le I_1 < 0.05 \text{IH}_1$	2,0	1,5	2,5	2,2	
14; 16 – 18	IH ₁ ≤I ₁ ≤1,2IH ₁	1,0	0,8	1,8	1,8	
	0,2Ін₁≤І₁<Ін₁	1,1	0,9	1,9	1,8	
(ТТ 0,2; ТН 0,2; Сч 0,5)	$0.05 \text{IH}_1 \le I_1 < 0.2 \text{IH}_1$	1,7	1,3	2,3	2,0	
19 - 28; 39 - 42	Ін₁≤І₁≤1,2Ін₁	1,3	1,0	2,0	1,9	
	0,2Ін₁≤І₁<Ін₁	1,4	1,1	2,1	1,9	
(ТТ 0,2; ТН 0,5; Сч 0,5)	$0,05I_{H_1} \le I_1 < 0,2I_{H_1}$	2,0	1,4	2,5	2,1	
29 – 38	IH ₁ ≤I ₁ ≤1,2IH ₁	1,5	1,0	2,2	1,9	
	0,2I _{H1} ≤I ₁ <i<sub>H1</i<sub>	2,2	1,3	2,7	2,1	
(ТТ 0,5; Сч 0,5)	$0,05I_{H_1} \le I_1 < 0,2I_{H_1}$	4,2	2,4	4,5	2,9	

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos \varphi = 1,0;\ 0,8;\ 0,5$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 5 до плюс 35 °C.
- 4. Допускается замена измерительных трансформаторов, счетчиков, серверов синхронизации времени на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 5.

Таблица 5 – Основные технические характеристики ИК

Таблица 5 — Основные технические характеристики ИК					
Наименование характеристики	Значение				
Количество измерительных каналов	42				
Нормальные условия:					
параметры сети:					
- напряжение, % от $U_{\mbox{\tiny HOM}}$	от 99 до101				
- ток, $\%$ от $I_{\text{ном}}$	1 до 120				
- коэффициент мощности cosj	1,0; 0,8; 0,5				
- температура окружающей среды, °С	от +21 до +25				
Условия эксплуатации:					
параметры сети:					
- напряжение, % от $U_{\scriptscriptstyle { ext{HOM}}}$	от 90 до 110				
- tok, % ot I_{hom}	от 1 до 120				
- частота, Гц	от 49,5 до 50,5				
- коэффициент мощности cosj	от 0,5 инд. до 0,8 емк.				
- температура окружающей среды для ТТ и ТН, °С	от -35 до +40				
- температура окружающей среды в месте расположения					
электросчетчиков, °С	от -40 до +60				
Надежность применяемых в АИИС КУЭ компонентов:					
Электросчетчики:					
- среднее время наработки на отказ, ч, не менее:	165000				
- среднее время восстановления работоспособности, ч	2				
Серверы:					
- среднее время наработки на отказ, ч, не менее	120000				
- среднее время восстановления работоспособности, ч	1				
Северы синхронизации времени:	22000				
- среднее время наработки на отказ, ч, не менее - среднее время восстановления работоспособности, ч	22000				
- среднее время восстановления расотоспосооности, ч Глубина хранения информации	2				
Электросчетчики:					
- тридцатиминутный профиль нагрузки в двух направлениях,					
сутки, не менее	113				
- при отключении питания, лет, не менее	10				
Серверы:					
- хранение результатов измерений и информации состояний					
средств измерений, лет, не менее	3,5				

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал ИВК:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и ИВК;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- сервере (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений.

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) филиала ПАО «РусГидро» - «Воткинская ГЭС» типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 6.

Таблица 6 - Комплектность АИИС КУЭ

Наименование	Тип	Рег. №	Количество, шт.
1	2	3	4
Трансформаторы тока	IORAZ	33344-06	30
Трансформаторы тока	TI	48529-11	24
Трансформаторы тока	CT	26070-06	1
Трансформаторы тока	TAR	32875-06	5
Трансформаторы тока	JK ELK CB3	41959-09	9
Трансформаторы тока	TG145-420	15651-96	12

1	2	3	4
Трансформаторы тока	TG145-420	30489-05	33
Трансформаторы тока	ТОЛ-СЭЩ	51623-12	12
Трансформаторы напряжения	GSES 24D	48526-11	30
Трансформаторы напряжения	SU 550/B1/B2/B3/B4 STL	28006-10	9
Трансформаторы напряжения	CPB 123-550	15853-96	15
Трансформаторы напряжения	CPB 72-800	47844-11	6
Трансформаторы напряжения	ЗНОЛ	46738-11	9
Счетчики электрической энергии многофункциональные	СЭТ-4ТМ.03М	36697-12	42
Северы синхронизации времени	ССВ-1Г	58301-14	2
Программное обеспечение	Пирамида 2000	-	1
Методика поверки	-	-	1
Паспорт-формуляр	-	-	1

Поверка

осуществляется по документу МП 004-17 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) филиала ПАО «РусГидро» - «Воткинская ГЭС». Измерительные каналы. Методика поверки», утвержденному ООО «МетроСервис» от 10 апреля 2017 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145РЭ1, утвержденному руководителем ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- ССВ-1 Γ по документу ЛЖАР.468150.004-01 МП «Инструкция. Серверы синхронизации времени ССВ-1 Γ . Методика поверки», утвержденному первым заместителем генерального директора заместителем по научной работе ФГУП «ВНИИФТРИ» в мае 2014 г.;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Рег. № 46656-11);
- термогигрометр «Ива-6А-Д»: диапазон измерений температуры от минус 20 °C до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 0 % до 98 %, дискретность 0,1 %;
 - миллитесламетр Ш1-15У: диапазон измерений магнитной индукции от 0,01 до 199,9 мТл. Попускается применение анапогичных средств поверки обеспечивающих определение

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиска клейма поверителя.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений количества электрической энергии (мощности) с использованием системы автоматизированной информационно-измерительной коммерческого учета электрической энергии филиала ПАО «РусГидро» - «Воткинская ГЭС» для оптового рынка электрической энергии (АИИС КУЭ филиала ПАО «РусГидро» - «Воткинская ГЭС»), аттестованной АО ГК «Системы и технологии», аттестат об аккредитации № РОСС RU.0001.310043 от 17.07.2012 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии и мощности (АИИС КУЭ) филиала ПАО «РусГидро» - «Воткинская ГЭС»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

 Γ ОСТ Р 8.596-2002 Γ СИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество Группа Компаний «Системы и Технологии» (АО ГК «Системы и Технологии»)

ИНН 3327304235

Адрес: 600026, г. Владимир, ул. Лакина, д. 8

Тел.: (4922) 33-67-66 Факс: (4922) 42-45-02 E-mail: st@sicon.ru

Заявитель

Общество с ограниченной ответственностью «Стройэнергетика»

(ООО «Стройэнергетика»)

ИНН: 7716809275

Адрес: 129337 г. Москва, ул. Красная Сосна, д. 20, стр. 1

Тел./факс: (495) 410-28-81

E-mail: Stroyenergetika@gmail.com

Испытательный центр

Общество с ограниченной ответственностью «Метрологический сервисный центр» (ООО «МетроСервис»)

Адрес: 660133, Россия, Красноярский край, г. Красноярск, ул. Сергея Лазо, ба

Тел.: (391) 224-85-62

E-mail: E.E.Servis@mail.com

Аттестат аккредитации ООО «МетроСервис» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311779 от 10.08.2016 г.

			С.С. Голубев
М			2017 г
	М п	Мп	Мп «»