ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Радиометры проточные для ВЭЖХ Flow-RAM

Назначение средства измерений

Радиометры проточные для ВЭЖХ Flow-RAM (далее по тексту радиометр Flow-RAM) предназначен для измерения относительного изменения активности в потоке жидкости (элюата) при регистрации гамма- и бета-излучения радионуклидов меченых соединений, а также для измерения активности радионуклидов в компонентах разделяемой смеси (при наличии соответствующих калибровок и методик измерений).

Описание средства измерений

Принцип работы радиометра Flow-RAM основан на поглощении энергии ионизирующей частицы в чувствительном объеме детектора и преобразовании поглощенной энергии в электрический импульс, регистрируемый последующими электронными устройствами. Распределение количества зарегистрированных импульсов во времени записывается в виде графика (хроматограммы). Количество импульсов, зарегистрированных в единицу времени (скорость счета импульсов) пропорциональна активности радионуклидов в элюате, находящемся в данный момент в измерительной ячейке, а суммарное количество импульсов, зарегистрированных в пике выходного сигнала (площадь хроматографического пика), пропорционально активности радионуклидов в элюате, прошедшем за это время через детектор.

Радиометры Flow-RAM состоят из:

- базового блока:
- детектирующей системы;
- персонального компьютера с программным обеспечением Laura.

Доступны версии базового блока Flow-Ram 1A с возможностью подключения одной детектирующей системы или Flow-Ram 1B с возможностью подключения двух детектирующих систем.

Детектирующая система радиометра Flow-RAM представляет собой детектор излучения и проточную ячейку, помещенную в свинцовую защиту

Для детектирующей системы применяются детекторы на основе NaI (PN-FXX-02, PN-FXX-03, PN-FXX-04, PN-FXX-14) и пластикового сцинтиллятора (PN-FXX-06).

Таблица 1 – Сведения о детекторах для детектирующей системы

	Значение				
Основные параметры	PN-FXX-02	PN-FXX-03	PN-FXX-04	PN-FXX-06	PN-FXX-14
Напряжение питания, В	600 - 1000	600 - 1000	500 - 1200	600 - 1000	600 - 1200
Материал детектора	NaI	NaI	NaI	Пластиковый сцинтилля- тор	NaI
Размеры детектора: Диаметр, см Толщина, см	2,5 0,1	2,5 2,5	5,0 5,0	4,3 0,025	4,4 5,1
Диаметр ФЭУ, см	3,8	3,8	5,1	3,8	5,1
Геометрия детектора	2π	2π	2π	2π	4π

	Значение				
Основные параметры	PN-FXX-02	PN-FXX-03	PN-FXX-04	PN-FXX-06	PN-FXX-14
Регистрируемое излучение	Гамма- кванты	Гамма- кванты	Гамма- кванты	Бета-частицы	Гамма- кванты
Диапазон регистрируемых энергий излучения, МэВ	от 0,01 до 0,06	от 0,05 до 1,50	от 0,05 до 3,00	от 0,03 до 2,00	от 0,02 до 1,50
Габаритные размеры, м, не более диаметр высота	0,05 0,18	0,05 0,18	0,066 0,28	0,05 0,18	0,13 0,3
Масса, кг, не более	0,45	0,45	1,035	0,45	1,035

В качестве проточной ячейки выступает стандартная трубка ВЭЖХ, объем которой регулируется с помощью диафрагмы для создания малых объемов или с помощью выбора количества витков катушки, поставляемой вместе с прибором. С использованием нужного количества витков можно самостоятельно задавать объемы ячейки в интервале от 25 до 500 мкл. Проточная ячейка крепится внутри свинцовой защиты. Толщина защиты зависит от решаемой задачи и может меняться от 25 до 75 мм.

Для управления работой радиометра Flow-RAM используется программное обеспечение Laura, установленное на персональный компьютер. Программное обеспечение Laura — это комплексное программное решение, позволяющее управлять не только любыми радиометрами производства LabLogic, но и модулями хроматографов, образуя, таким образом, единый радиохроматографический комплекс

Пломбирование радиометра Flow-RAM не предусмотрено.

Рисунок 1 - Фотография внешнего общего вида радиометра Flow-RAM

Программное обеспечение

Программное обеспечение Laura устанавливается на персональный компьютер и работает под управлением операционной системы Windows. ПО предназначено для настройки, проверки работоспособности, получения и обработки данных. К метрологически значимой части относится все ПО Laura.

Таблица 2 - Идентификационные данные метрологически значимого ПО

Идентификационные данные (признаки)	Значения	
Идентификационное наименование ПО	Laura (laura.exe)	
Номер версии (идентификационный номер) ПО	5.0.21)	
Цифровой идентификатор ПО (по MD5)	2683b62c5cca73ffc7e4d8cc93ad40e3 ²⁾	
1) Номер версии не ниже указанного в таблице 2) Контрольная сумма файла относится к текущей версии программного обеспечения		

Влияние ПО учтено при нормировании метрологических характеристик.

Уровень защиты программного обеспечения радиометров Flow-RAM от непреднамеренных и преднамеренных изменений соответствует уровню «средний», согласно Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 3 - Метрологические характеристики радиометров Flow-RAM

Таблица 3 - Метрологические характеристики радиометров Flow-RA	ΔM
Наименование характеристики	Значение
Фон, c^{-1} , типичные значения в защите:	
- детектор PN-FXX-02	1
- детектор PN-FXX-03	5
- детектор PN-FXX-04	8
- детектор PN-FXX-06	5
- детектор PN-FXX-14	15
Чувствительность детектора при регистрации гамма-излучения источника типа ОСГИ радионуклида 137 Cs, Бк $^{-1}$ ·с $^{-1}$, не менее:	
- детектор PN-FXX-03	0,03
- детектор PN-FXX-04	0,15
- детектор PN-FXX-14	0,15
Чувствительность детектора* при регистрации гамма-излучения ис-	
точника типа ОСГИ радионуклида 57 Со, Бк $^{-1}$ ·с $^{-1}$, не менее:	
- детектор PN-FXX-03	0,10
- детектор PN-FXX-14	0,35
Чувствительность детектора* при регистрации гамма-излучения источника типа ОСГИ радионуклида 60 Со, Бк $^{-1}$ ·с $^{-1}$, не менее:	
- детектор PN-FXX-03	0,05
- детектор PN-FXX-04	0,20
- детектор PN-FXX-14	0,15
Чувствительность детектора* при регистрации гамма-излучения ис-	
точника типа ОСГИ радионуклида 241 Am, $5\kappa^{-1}\cdot c^{-1}$, не менее:	
- детектор PN-FXX-02	0,10
- детектор PN-FXX-03	0,04
- детектор PN-FXX-14	0,15

Наименование характеристики	Значение
Чувствительность детектора* PN-FXX-02 при регистрации гамма-	
излучения радионуклида 129 I, Бк $^{-1}$ ·с $^{-1}$, не менее	0,10
Чувствительность детектора* PN-FXX-06 при регистрации бета-	0,40
излучения источника типа 1СО, Бк ⁻¹ ·с ⁻¹ , не менее:	0,40
Чувствительность детектора* PN-FXX-06 при регистрации бета-	
излучения источника типа ОРИБИ радионуклида ¹⁴ C,	0,20
(имп/с)/(част/с), не менее	
Чувствительность детектора* PN-FXX-06 при регистрации бета-	
излучения источника типа ОРИБИ радионуклида ⁶⁰ Co,	0,80
(имп/с)/(част/с), не менее:	
Чувствительность детектора* PN-FXX-06 при регистрации бета-	
излучения источника типа ОРИБИ радионуклида 90 Sr $+$ 90 Y,	0,95
(имп/с)/(част/с), не менее:	
Предел детектирования, Бк, не более:	
¹³⁷ Cs (источник типа ОСГИ)	
- детектор PN-FXX-03	5
- детектор PN-FXX-04	250
- детектор PN-FXX-14	100
⁹⁰ Sr+ ⁹⁰ Y (источник типа 1CO) детектор PN-FXX-06	100
¹²⁹ I (источник специального назначения) детектор PN-FXX-02	50
Предел допускаемого относительного СКО выходного сигнала (по	
площади хроматографического пика), %	3
Пределы допускаемого относительного изменения выходного сиг-	. 2
нала за 8 часов непрерывной работы, %	± 3
Время установления рабочего режима, мин, не более	5
Время непрерывной работы, не менее, ч	8

Примечание * - Типичное значение чувствительности при расположении источника вплотную к торцевой поверхности блока детектирования и полностью открытых дискриминаторах окна регистрации. Реальное значение чувствительности определяется при поверке радиометра.

Таблица 4 – Основные технические характеристики

Наименование характеристики	Значение
Питание осуществляется от сети постоянного тока 0,5 А:	
- напряжение, В	5 DC (USB)
Потребляемая мощность, В:А, не более	2,5
Габаритные размеры базового блока, мм, не более:	
- длина	240
- ширина	230
- высота	90
Масса базового блока, кг, не более	2,0
Рабочие условия эксплуатации:	
- температура окружающего воздуха, °С	от +10 до +40
- относительная влажность, %, не более	90
- атмосферное давление, кПа	от 90 до 110
Средняя наработка на отказ, ч	20000
Средний срок службы после ввода в эксплуатацию, лет	5

Знак утверждения типа

наносится методом компьютерной графики на титульный лист Руководства по эксплуатации радиометра Flow-RAM и на пленочную этикетку, клеящуюся на лицевой панели корпуса базового блока.

Комплектность средства измерений

Таблица 5 - Комплект поставки радиометра Flow-RAM

Наименование	Обозначение	Кол-во	Примечание
Базовый блок	Flow-RAM или Flow-RAM 1B	1	1
Детектор	PN-FXX-02, PN-FXX-03,		
	PN-FXX-04, PN-FXX-06,	1 или 2	2
	PN-FXX-14		
Проточилов вистио по оргинилова	PJ-FXX-10, PJ-FXX-11,		
Проточная ячейка со свинцовой	PJ-FXX-12, PJ-FXX-15,	1 или 2	2
защитой	PJ-FXX-16, PJ-FXX-17		
Комплект кабелей		1 или 2	2
Программное обеспечение (ПО)	Laura	1	3
	Радиометр проточный для ВЭЖХ		
Руководство по эксплуатации	Flow-RAM. Руководство по экс-	1	
	плуатации		
	МП 2101-001-2017		
Методика поверки	Радиометры проточные для ВЭЖХ	1	
-	Flow-RAM. Методика поверки		
Компьютер		1	4, 5
Принтер		1	4, 5

Примечания:

- 1) Версия базового блока согласуется с заказчиком при заказе радиометра.
- 2) По согласованию с заказчиком и в зависимости от версии поставляемого базового блока.
- 3) Поставляется в виде дистрибутива на компакт диске, электронном носителе или путем самостоятельной загрузки с web-сайта производителя.
- 4) Конкретная модель компьютера и принтера согласуется с заказчиком при заказе системы.
- 5) Дополнительная поставка по желанию заказчика.

Поверка

осуществляется по документу МП 2101-001-2017 «Радиометры проточные для ВЭЖХ Flow-RAM. Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» 12.04.2017 г.

Основные средства поверки:

Рабочий эталон не ниже 2-го разряда по ГОСТ 8.033-96 - Источники фотонного излучения радионуклидные спектрометрические закрытые эталонные ОСГИ-3 с радионуклидами 137 Cs, 241 Am

Рабочий эталон не ниже 2-го разряда по ГОСТ 8.033-96 - Источники бета-излучения закрытые с радионуклидами $^{90}{\rm Sr+}^{90}{\rm Y}$ типа 1СО.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки (оттиск поверительного клейма) наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к радиометрам проточным для ВЭЖХ Flow-RAM

ГОСТ 27451-87 «Средства измерений ионизирующих излучений. Общие технические условия»

ГОСТ 8.033-96 «ГСИ. Государственная поверочная схема для средств измерений активности радионуклидов, потока и плотности потока альфа-, бета-частиц и фотонов радионуклидных источников»

Техническая документация фирмы-изготовителя

Изготовитель

Фирма LabLogic Systems Ltd, Великобритания

Адрес: Paradigm House, 3 Melbourne Avenue, Broomhill, Sheffield S10 2QJ, United Kingdom Телефон:+44(0)114 266 7267; факс: +44(0)114 266 3944

Заявитель

Закрытое акционерное общество «Приборы» (ЗАО «Приборы»)

ИНН 7724046323

Адрес: Россия, 109028, Москва, Певческий пер., 4, стр. 1

Юридический адрес: Россия, 115304, г. Москва, ул. Кантемировская, 3 к. 3

Телефон: +7 (495) 937-45-94 Факс: +7 (495) 937-45-92

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., д.19

Телефон: +7 (812) 251-76-01 Факс: +7 (812) 713-01-14 E-mail: <u>info@vniim.ru</u> Web-сайт: www.vniim.ru

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

М.п.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

		С.С. Голубев
«	»	2017 г.