ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакции, утвержденной приказом Росстандарта № 141 от 30.01.2019 г.)

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Приволга» по НПС «Бородаевка-1»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Приволга» по НПС «Бородаевка-1» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее - ТТ), трансформаторы напряжения (далее - ТН) счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень — информационно-вычислительный комплекс электроустановки (ИВКЭ) АИИС КУЭ, включающий в себя устройство сбора и передачи данных Сикон С70 (далее – УСПД), каналообразующую аппаратуру, устройство синхронизации времени УСВ-2 (далее – УСВ-2).

3-й уровень – информационно-вычислительный комплекс (далее - ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (далее – сервер БД), сервер опроса, сервер приложений, сервер резервного копирования, автоматизированные рабочие места персонала (далее - APM), серверы точного времени ССВ-1Г, программное обеспечение (далее – ПО) ПК «Энергосфера».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы.

На верхнем - третьем уровне системы выполняется обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации - участники оптового рынка электрической энергии и мощности через каналы связи.

Данные хранятся в сервере базы данных. Последующее отображение собранной информации происходит при помощи АРМ. Данные с ИВК передаются на АРМ, установленные в соответствующих службах, по сети Ethernet. Полный перечень информации, получаемой на АРМ, определяется техническими характеристиками многофункциональных электросчетчиков и уровнем доступа АРМ к базе данных и сервера базы данных. ИВК является единым центром сбора и обработки данных всех АИИС КУЭ организаций системы ОАО «АК «Транснефть».

Система осуществляет обмен данными между АИИС КУЭ смежных субъектов по каналам связи Internet в формате xml-файлов.

Данные по группам точек поставки в организации-участники ОРЭ и РРЭ, в том числе АО «АТС», АО «СО ЕЭС» и смежным субъектам, передаются с ИВК с учетом агрегации данных по всем точкам измерений системы автоматизированной информационно-измерительной коммерческого учета электрической энергии ОАО «АК «Транснефть» - АИИС КУЭ ОАО «АК «Транснефть» (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений (далее - Рег. №) 54083-13) с учетом полученных данных по точкам измерений, входящим в настоящую систему и АИИС КУЭ смежных субъектов в виде ХМL-файлов в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка, в том числе с использованием ЭП субъекта рынка.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы (счетчиков, УСПД и ИВК). Задача синхронизации времени решается использованием службы единого координированного времени UTC. Для его трансляции используется спутниковая система глобального позиционирования ГЛОНАСС/GPS. Синхронизация часов ИВК АИИС КУЭ с единым координированным временем обеспечивается двумя серверами синхронизации времени ССВ-1Г (Рег. №39485-08), входящими в состав ЦСОД. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети ТСР/IP согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам спутниковой навигационной системы ГЛОНАСС, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянное и непрерывное обновление данных на сервере ИВК. Резервный сервер синхронизации ИВК используется при выходе из строя основного сервера.

Синхронизация часов УСПД осуществляется подключенным к нему устройством синхронизации времени УСВ-2. Сличение часов УСПД с УСВ-2 проводится не реже 1 раза в сутки. Синхронизация часов УСПД от УСВ-2 производится независимо от величины расхождения времени. В случае неисправности, ремонта или поверки УСВ-2 имеется возможность синхронизации часов УСПД с уровня ИВК ПАО "Транснефть".

Сравнение показаний часов счетчиков и УСПД происходит при обращении к счетчикам. Коррекция показаний часов счетчиков осуществляется при расхождении показаний часов счетчиков и УСПД на величину более чем ± 1 с, но не чаще одного раза в сутки.

Журналы событий счетчиков, УСПД и сервера ИВК отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение ПК «Энергосфера» версии не ниже 8.0. Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню - «высокий» в соответствии Р 50.2.077-2014. Метрологически значимая часть ПО приведена в таблице 1.

Таблица 1 - Метрологические значимые модули ПО

1 world 1 110 portern 100 miles meggin 110			
Идентификационные признаки	Значение		
Идентификационное наименование ПО	ПК «Энергосфера»		
	Библиотека pso_metr.dll		
Номер версии (идентификационный номер) ПО	1.1.1.1		
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав ИК АИИС КУЭ

	100	Измерительные компоненты				
Номер и наименование ИК		TT	ТН	Счётчик	УСПД	УСВ/УС СВ/Серв ер
1	НПС Бородаевка- 1, ЗРУ - 6 кВ, яч. 4	ТЛО-10 1000/5 Кл. т. 0,5S Рег. № 25433-11	ЗНОЛП-6У2 6000:√3/100:√3 Кл. т. 0,5 Рег. № 46738-11	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-12	СИКОН С70 Рег. № 28822-05	УСВ-2 Рег. № 41681- 10 ССВ-1Г Рег. №39485- 08 НР Рго- Liant BL460
2	НПС Бородаевка- 1, ЗРУ - 6 кВ, яч. 17	ТЛО-10 1000/5 Кл. т. 0,5S Рег. № 25433-11	ЗНОЛП-6У2 6000:√3/100:√3 Кл. т. 0,5 Рег. № 46738-11	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-12	СИКОН С70 Рег. № 28822-05	УСВ-2 Рег. № 41681- 10 ССВ-1Г Рег. №39485- 08 НР Рго- Liant BL460

Примечания:

- 1. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 2. Допускается замена УСПД и УСВ-2 на аналогичные утвержденных типов.
- 3. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Номера ИК	Вид электроэнергии	Границы основной погрешности, $(\pm\delta)$, %	Границы погрешности в рабочих условиях, $(\pm\delta)$, %
1, 2	Активная	1,1	3,0
,	Реактивная	2,7	4,8

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд, I=0.02 Іном и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1-2 от 0 до плюс 35 °C.

Основные технические характеристики ИК приведены в таблице 4.

Таблица 4 - Основные технические характеристики ИК

Наименование характеристики Наименование характеристики	Значение
1	2
Количество измерительных каналов	2
Нормальные условия:	
параметры сети:	
- напряжение, % от $\mathrm{U}_{\scriptscriptstyle \mathrm{HOM}}$	от 99 до 101
- ток, % от I _{ном}	от 100 до 120
- частота, Гц °С	от 49,85 до 50,15
- коэффициент мощности cosj	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 2 до 120
 коэффициент мощности, соѕф 	от 0,5 инд. до 0,8 емк.
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70
- температура окружающей среды в месте расположения	
электросчетчиков, °C:	от -40 до +65
- температура окружающей среды в месте расположения	
сервера, УСПД и УСВ°С;	от +10 до +30

Продолжение таблицы 4

1	2
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	
- среднее время наработки на отказ, ч, не менее:	
- среднее время восстановления работоспособности, ч	165000
УСПД:	2
- среднее время наработки на отказ не менее, ч	
- среднее время восстановления работоспособности, ч	70000
УСВ-2:	2
- среднее время наработки на отказ не менее, ч	
	35000
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	45
- при отключении питания, лет, не менее	10
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электропотребления по каждому каналу и электропотребление за	
месяц по каждому каналу, суток, не менее	45
- сохранение информации при отключении питания, лет,	
не менее	10
Сервер:	
- хранение результатов измерений и информации	
состояний средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений.

Цикличность:

- измерений приращений электроэнергии на интервалах 30 минут (функция автоматизирована);
- сбора результатов измерений не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Приволга» по НПС «Бородаевка-1» типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.
Трансформатор тока	ТЛО-10	6
Трансформатор напряжения	ЗНОЛП-6У2	6
Счётчик электрической энергии многофункциональный	CЭT-4TM.03M	2
Устройство сбора и передачи данных	СИКОН С70	1
Устройство синхронизации времени	УСВ-2	1
Сервер	HP Pro-Liant BL460	2
Сервер синхронизации времени	ССВ-1Г	2
Программное обеспечение	ПК «Энергосфера»	1
Методика поверки	МП 206.1-104-2017	1
Формуляр	НС.2016.АСКУЭ.00161 ФО	1

Поверка

осуществляется по документу МП 206.1-104-2017 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Приволга» по НПС «Бородаевка-1». Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 06 апреля 2017 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» 04.05.2012 г.;
- УСПД СИКОН С70 по документу «Контроллеры сетевые индустриальный СИКОН С70. Методика поверки ВЛСТ 220.00.000 И1», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в мае 2005 г.;
- УСВ-2 по документу «Устройство синхронизации времени УСВ-2. Методика поверки», утвержденному ФГУП «ВНИИФТРИ» 12.05.2010 г.;
- ССВ-1 Γ по документу «Источники частоты и времени/ серверы точного времени ССВ-1 Γ . Методика поверки.» ЛЖАР.468150.003-08 МП, утвержденным Γ ЦИ СИ «Связь Γ ест» ФГУП ЦНИИС в ноябре 2008 Γ .;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), per. № 27008-04;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих - кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Приволга» по НПС «Бородаевка-1», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации \mathbb{N} RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Приволга» по НПС «Бородаевка-1»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное Общество «Транснефть-Приволга» (АО «Транснефть-Приволга»)

ИНН 4716016979

Адрес: 443020, г. Самара, ул. Ленинская, д. 100

Телефон: (8452) 356-462 Факс: (8452) 356-132

E-mail: srnu@sar.sam.transneft.ru

Заявитель

Общество с ограниченной ответственностью «НексусСистемс» (ООО «НексусСистемс»)

Адрес: 450022, Республика Башкортостан, г. Уфа, ул. Менделеева, д. 134/7

Телефон: (347) 291-26-90 Факс: (347) 216-40-18

E-mail: <u>info@nexussystems.ru</u> Web-сайт: http://nexussystems.ru/

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: (495) 437-55-77 Факс: (495) 437-56-66 E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2019 г.