ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Транссервисэнерго» (ООО «Верхневолжский СМЦ»)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Транссервисэнерго» (ООО «Верхневолжский СМЦ») (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, автоматизированного сбора, обработки, хранения, формирования отчётных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (далее - ТТ) по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее - ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электрической энергии в режиме измерений активной электрической энергии по ГОСТ Р 52323-2005, и в режиме измерений реактивной электрической энергии по ГОСТ Р 52425-2005, вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень - информационно-вычислительный комплекс (ИВК) с функциями информационно-вычислительного комплекса электроустановки (ИВКЭ), включающий в себя сервер АО «Транссервисэнерго» с программным обеспечением (далее - ПО) «АльфаЦЕНТР», автоматизированные рабочие места персонала (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на входы соответствующего GSM-модема, далее по каналам связи стандарта GSM поступает на сервер АО «Транссервисэнерго», где осуществляется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов.

Передача информации от сервера АО «Транссервисэнерго» в ПАК АО «АТС» с электронной цифровой подписью субъекта ОРЭ, в филиал АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде хml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учёта соотнесены с текущим московским временем. Результаты измерений передаются в целых числах кВт·ч.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровни ИИК и ИВК. СОЕВ имеет доступ к серверу синхронизации шкалы времени по протоколу NTP - NTP-серверу ФГУП «ВНИИФТРИ», обеспечивающему передачу точного времени через глобальную сеть Интернет. Синхронизация системного времени NTP-серверов первого уровня осуществляется от сигналов шкалы времени Государственного первичного эталона времени и частоты. Погрешность синхронизации системного времени NTP-серверов первого уровня относительно шкалы времени UTC (SU) не превышает 10 мс. Сличение часов сервера АО «Транссервисэнерго» с часами NTP-сервера, передача точного времени через глобальную сеть интернет осуществляется с помощью модуля ПО «АльфаЦЕНТР» (AC_T) с использованием протокола NTP в соответствии с международным стандартом сетевого взаимодействия RFC-5905. Контроль показаний времени часов сервера осуществляется по запросу каждые 30 мин, коррекция часов осуществляется независимо от наличия расхождений. Сравнение показаний часов счетчиков с сервером АО «Транссервисэнерго» производится во время сеанса связи со счетчиками (1 раз в сутки). Корректировка часов счетчика выполняется автоматически при расхождении с часами сервера на величину ±1 с, но не чаще одного раза в Передача информации счётчиков электрической OT энергии АО «Транссервисэнерго» реализована с помощью каналов связи, задержки в каналах связи составляют не более 0,2 с.

Погрешность СОЕВ не превышает ±5 с.

Журналы событий счетчика и сервера отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР», имеющее сертификат соответствия № ТП 031-15 от 12.03.2015 г. в Системе добровольной сертификации программного обеспечения средств измерений. Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1. Влияние математической обработки на результаты измерений не превышает ±1 единицы младшего разряда.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ac_metrology.dll
Номер версии (идентификационный номер) ПО	12.1
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54
Алгоритм вычисления цифрового идентификатора	MD5

Метрологические и технические характеристики

Таблица 2 - Состав ИК АИИС КУЭ и их метрологические характеристики

Но-мер ИК	Наименование точки измерений	Измерительные компоненты					Метрологические характеристики ИК	
		TT	ТН	Счетчик	Сервер		Границы допускаемой основной относительной погрешности, (±δ) %	Границы допускаемой относительной погрешности в рабочих условиях, $(\pm\delta)$ %
1	2	3	4	5	6	7	8	9
1	ПС 110/10 кВ «Ново-Талицы», РУ-10 кВ,	ТЛМ-10 Кл.т. 0,5 300/5	НАМИ-10-95 УХЛ2 Кл.т. 0,5 10000/100	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5		Активная Реактив-	1,1	3,0
	Яч. Фид. №117	Рег. № 2473-69	Рег. № 20186-05	Рег. № 36697-08		ная	2,3	4,7
2	ПС 110/10 кВ Кл.т. 0,5 «Ново-Талицы»,		НАМИ-10-95 УХЛ2 Кл.т. 0,5 10000/100	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5	HP DL380	Активная	1,1	3,0
2	РУ-10 кВ, Яч. Фид. №110	900/3 Per. № 2473-69	Per. № 20186-05	Рег. № 36697-08	G7 E	Реактив- ная	2,3	4,7
2	ЦРП-10 кВ, 2 с.ш. 10 кВ, яч.19	ТПЛ-10 У3 Кл.т. 0,5	НТМИ-10-66 УЗ Кл.т. 0,5	ПСЧ-4ТМ.05М.12 Кл.т. 0,5S/1,0		Активная	1,3	3,3
3		300/5 Per. № 1276-59	10000/100 Per. № 831-69	Рег. № 36355-07		Реактив- ная	2,5	5,7

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
4	ЦРП-10 кВ, 1 с.ш. 10 кВ, яч.4	ТПЛ-10 УЗ Кл.т. 0,5 300/5	НТМИ-10-66 УЗ Кл.т. 0,5 10000/100	ПСЧ-4ТМ.05М.12 Кл.т. 0,5S/1,0	HP DL380 G7 E	Активная	1,3	3,3
		Рег. № 1276-59	Рег. № 831-69	Рег. № 36355-07		Реактив- ная	2,5	5,7
	ЦРП-10 кВ, 1 с.ш. 10 кВ, яч.7	ТПЛ-10 Кл.т. 0,5	НТМИ-10-66 УЗ Кл.т. 0,5	ПСЧ-4ТМ.05М.12 Кл.т. 0,5S/1,0		Активная	1,3	3,3
5		300/5 Per. № 1276-59	10000/100 Per. № 831-69	Per. № 36355-07		Реактив- ная	2,5	5,7
6	ЦРП-10 кВ, 1 с.ш. 10 кВ, яч.5	ТПЛ-10 Кл.т. 0,5 150/5	НТМИ-10-66 УЗ Кл.т. 0,5 10000/100	ПСЧ-4ТМ.05М.12 Кл.т. 0,5S/1,0		Активная	1,3	3,3
0		130/3 Per. № 1276-59	Per. № 831-69	Per. № 36355-07		Реактив- ная	2,5	5,7
7	ЦРП-10 кВ, 2 с.ш. 10 кВ, яч.18	ТПЛ-10 Кл.т. 0,5 150/5	НТМИ-10-66 УЗ Кл.т. 0,5 10000/100	ПСЧ-4ТМ.05М.12 Кл.т. 0,5S/1,0		Активная	1,3	3,3
		130/3 Per. № 1276-59	Per. № 831-69	Per. № 36355-07		Реактив- ная	2,5	5,7

Примечания:

- 1 В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии и средней мощности на интервале времени 30 минут.
- 3 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 - Основные технические характеристики ИК

Наименование характеристики	Значение
Количество ИК	7
Нормальные условия:	
параметры сети:	
напряжение, % от Uном	от 95 до 105
– ток, % от Іном	от 5 до 120
коэффициент мощности	0,9
– частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +15 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Uном	от 90 до 110
– ток, % от Іном	от 5 до 120
коэффициент мощности:	
$-\cos\varphi$	0,5 до 1,0
– частота, Гц	от 49,8 до 50,2
температура окружающей среды для ТТ и ТН, °С	от -45 до +40
температура окружающей среды в месте расположения	
счетчиков, °С	от 0 до +40
Надежность применяемых в АИИС КУЭ компонентов:	
счетчики:	
 среднее время наработки на отказ, ч, не менее 	140000
 среднее время восстановления работоспособности, ч 	2
сервер:	
 среднее время наработки на отказ, ч, не менее 	70000
 среднее время восстановления работоспособности, ч 	1
Глубина хранения информации:	
счетчики:	
 тридцатиминутный профиль нагрузки в двух направлениях, 	
сутки, не менее	113
 при отключении питания, лет, не менее 	5
сервер:	
 хранение результатов измерений и информации состояний 	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика электрической энергии;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера.
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика электрической энергии;
 - сервера.

Возможность коррекции времени в:

- счетчиках электрической энергии (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений;
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество
Трансформаторы тока	ТЛМ-10	4 шт.
Трансформаторы тока проходные с литой изоляцией	ТПЛ-10	10 шт.
Трансформаторы напряжения	НАМИ-10-95 УХЛ2	2 шт.
Трансформаторы напряжения	НТМИ-10-66 У3	2 шт.
Счетчики электрической энергии многофункциональные	CЭT-4TM.03M	2 шт.
Счетчики электрической энергии многофункциональные	ПСЧ-4ТМ.05М	5 шт.
Сервер АО «Транссервисэнерго»	HP DL380 G7 E	1 шт.
Методика поверки	МП 201-012-2017	1 экз.
Паспорт-формуляр	ТЛДК.411711.047.ЭД.ФО	1 экз.

Поверка

осуществляется по документу МП 201-012-2017 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Транссервисэнерго» (ООО «Верхневолжский СМЦ»). Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 18 апреля 2017 г.

Основные средства поверки:

- ТТ по ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- ТН по ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- счетчик СЭТ-4ТМ.03М в соответствии с методикой поверки ИЛГШ.411152.145РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.145РЭ, согласованной с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 04 декабря 2007 г.;

- счетчик ПСЧ-4ТМ.05М в соответствии с методикой поверки ИЛГШ.411152.146РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.146РЭ, согласованной с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 20.11.2007 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), (регистрационный номер в Федеральном информационном фонде 27008-04);
- термогигрометр CENTER (мод.314), (регистрационный номер в Федеральном информационном фонде 22129-01).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Транссервисэнерго» (ООО «Верхневолжский СМЦ»)

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «Транссервисэнерго» (АО «Транссервисэнерго»)

ИНН: 7710430593

Адрес: 119296, г. Москва, Ленинский проспект, д. 64А

Телефон: (495) 380-37-70; Факс: (495) 380-37-62 Web-сайт: tsenergo.ru; E-mail: <u>chis@tsenergo.ru</u>

Заявитель

Общество с ограниченной ответственностью «Энергоальянс» (ООО «Энергоальянс»)

ИНН: 7716677445

Адрес: 129128, г. Москва, проезд Кадомцева, д. 15 Телефон: (926) 426-88-67; E-mail: energoalians@inbox.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119631, г. Москва, ул. Озерная, д.46 Телефон: (495) 437-55-77; Факс: (495) 437-56-66

E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___ » _____ 2017 г.