ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакции, утвержденной приказом Росстандарта № 2373 от 07.11.2017 г.)

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Оренбургской СЭС-5

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Оренбургской СЭС-5 (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, сбора, обработки, хранения, формирования отчётных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трехуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- автоматические измерения 30-минутных приращений активной и реактивной электроэнергии, мощности на 30-минутных интервалах;
- периодический (1 раз в сутки) и /или по запросу автоматический сбор привязанных к календарному времени измеренных данных о приращениях электроэнергии с дискретностью учета (30 мин) и данных о состоянии средств измерений;
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передачу результатов измерений на сервер АИИС КУЭ и автоматизированные рабочие места (далее APM);
- предоставление по запросу доступа к результатам измерений, данным о состоянии объектов и средств измерений со стороны сервера электросетевых и энергосбытовых организаций;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка пломб, паролей и т.п.);
- диагностику и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройку параметров АИИС КУЭ;
 - ведение времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень информационные-измерительные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ) класса точности 0,5S по ГОСТ 7746-2001, трансформаторы напряжения (ТН) класса точности 0,5 по ГОСТ 1983-2001, счетчики электрической энергии СЭТ-4ТМ.03М класса точности 0,5S в режиме измерений активной электрической энергии по ГОСТ Р 52323-2005 и класса точности 1,0 в режиме измерений реактивной электрической энергии по ГОСТ Р 52425-2005, установленные на объектах, указанных в таблице 2.
- 2-й уровень информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (далее УСПД) ЭКОМ-3000, каналообразующую аппаратуру и технические средства обеспечения электропитания;
- 3-й уровень информационно-вычислительный комплекс (ИВК), включающий в себя сервер АИИС КУЭ (далее сервер), АРМ персонала, программное обеспечение (далее ПО) «Энергосфера», вторичные измерительные цепи и технические средства приема-передачи данных.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают в счетчик электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин;
 - средняя на интервале времени 30 мин активная (реактивная) электрическая мощность.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных по проводной линии связи на третий уровень системы (сервер АИИС КУЭ).

На верхнем - третьем уровне системы выполняется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов. ИВК обеспечивает автоматизированный сбор и долгосрочное хранение результатов измерений, информации о состоянии средств измерений, расчет потерь электроэнергии от точки измерений до точки поставки, вычисление дополнительных параметров, подготовку справочных и отчетных документов. Передача информации в организации-участники оптового рынка электроэнергии осуществляется от сервера БД, через сеть интернет в виде сообщений электронной почты.

Также, ИВК АИИС КУЭ Оренбургской СЭС-5 производит сбор, обработку, хранение, отражение и передачу измерительной информации, поступающей от системы автоматизированной информационно-измерительной коммерческого учета электроэнергии Державинской СЭС с заводским номером 5600009700, рег. №67466-17.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), включающей в себя источник сигналов эталонного времени на базе GPS-приемника, входящего в состав УСПД «ЭКОМ-3000», часы сервера и счетчиков.

Время часов УСПД синхронизировано с временем GPS-приемника, сличение ежесекундное, погрешность синхронизации не более ± 0.2 с. Сличение времени часов сервера с временем часов УСПД, осуществляется с периодичностью 1 раз в час и корректировка времени часов сервера осуществляется при расхождении с временем часов УСПД ± 2 с.

Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в сутки, коррекция времени часов счетчиков проводится при расхождении времени часов счетчика и часов УСПД ± 2 с.

Погрешность СОЕВ не превышает ±5 с.

Журналы событий счетчиков электроэнергии, УСПД и сервера отражают: время (дата, часы, минуты, секунды) до и после проведения процедуры коррекции часов указанных устройств.

Пломбирование АИИС КУЭ не предусмотрено.

Программное обеспечение

В АИИС КУЭ, используется комплекс программно-технический измерительный (ПТК) «ЭКОМ», регистрационный номер в Федеральном информационном фонде (далее - рег. №) № 19542-05, представляющий собой совокупность технических устройств (аппаратной части ПТК) и программного комплекса (ПК) «Энергосфера» в состав которого входит специализированное ПО, идентификационные данные которого указаны в таблице 1. ПК «Энергосфера» обеспечивает защиту ПО и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных, передаваемых из УСПД ИВКЭ в ИВК по интерфейсу Ethernet, является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера». Оценка влияния ПО на метрологические характеристики СИ - нет.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с P 50.2.077-2014.

Таблица 1 - Идентификационные данные ПО

Итомический на таким на (призмаки)	Значение	
Идентификационные данные (признаки)	«ПК Энергосфера»	
Идентификационное наименование ПО	pso_metr.dll	
Номер версии (идентификационный номер) ПО	не ниже 8.0.34	
Цифровой идентификатор ПО	cbeb6f6ca69318bed976e08a2bb7814b	
Алгоритм вычисления цифрового идентификатора	MD5	

Метрологические и технические характеристики

Таблица 2 - Состав ИК АИИС КУЭ и их метрологические характеристики

		Состав ИК				ские х	логиче- аракте- ки ИК																					
об	Гаименование бъекта и номер чки измерений	TT	TH	Счетчик	УСПД/ Сервер Вид электроэнергии		Основная погрешность, %	Погрешность в рабочих условиях, %																				
1	2	3	4	5	6	7	8	9																				
1	Оренбургская СЭС-5, КРУ 10 кВ, 1 с.ш., яч. 101	ТОЛ- СЭЩ-10- 21 1000/5 Кл. т. 0,5S	НОЛ-СЭЩ-10-4 10000/√3 /100/√3 Кл. т. 0,5	СЭТ- 4ТМ.03М.01 Кл. т. 0,5S/1	en9																							
2	Оренбургская СЭС-5, КРУ 10 кВ, 2 с.ш., яч. 201	ТОЛ- СЭЩ-10- 21 1000/5 Кл. т. 0,5S	НОЛ-СЭЩ-10-4 10000/√3 /100/√3 Кл. т. 0,5	СЭТ- 4ТМ.03М.01 Кл. т. 0,5S/1	Proliant DL20 G		±1,1	±3,1																				
3	Оренбургская СЭС-5, КРУ 10 кВ, 1 с.ш., яч. 106, ТСН-1	ТОЛ- СЭЩ-10- 21 10/5 Кл. т. 0,5S	НОЛ-СЭЩ-10-4 10000/√3 /100/√3 Кл. т. 0,5	СЭТ- 4ТМ.03М.01 Кл. т. 0,5S/1	3KOM-3000 / HP Proliant DL20 Gen9					±2,7	±5,2																	
4	Оренбургская СЭС-5, КРУ 10 кВ, 2 с.ш., яч. 206, ТСН-2	ТОЛ- СЭЩ-10- 21 10/5 Кл. т. 0,5S	НОЛ-СЭЩ-10-4 10000/√3 /100/√3 Кл. т. 0,5	СЭТ- 4ТМ.03М.01 Кл. т. 0,5S/1	(T)																							

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
5	Оренбургская СЭС-5, БМИУ 1, ТСН-1	ТОП- 0,66-5 30/5 Кл. т. 0,5S	-	СЭТ- 4ТМ.03М.09 Кл. т. 0,5S/1	6			
6	Оренбургская СЭС-5, БМИУ 2, ТСН-2	ТОП- 0,66-5 30/5 Кл. т. 0,5S	1	СЭТ- 4ТМ.03М.09 Кл. т. 0,5S/1	-3000 / DL20 Gen9	Актив ная,	±1,0	±2,4
7	Оренбургская СЭС-5, БМИУ 3, ТСН-3	ТОП- 0,66-5 30/5 Кл. т. 0,5S	-	СЭТ- 4ТМ.03М.09 Кл. т. 0,5S/1	ЭКОМ. HP Proliant	Ре- акти вная	±2,3	±4,0
8	Оренбургская СЭС-5, БМИУ 4, ТСН-4	ТОП- 0,66-5 30/5 Кл. т. 0,5S	-	СЭТ- 4ТМ.03М.09 Кл. т. 0,5S/1	1			

Примечания:

- 1. В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2. Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 минут.
- 3. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 4. Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 - Основные технические характеристики ИК

Наименование характеристики	Значение
1	2
Количество ИК	8
Нормальные условия:	
параметры сети:	
- напряжение, % от Uном	от 95 до 105
- ток, % от Іном	от 1 до 120
 коэффициент мощности, соѕф 	0,9
- частота, Гц	от 49,8 до 50,02
- температура окружающей среды, °С	от +15 до +25

Продолжение таблицы 3

1	2
Условия эксплуатации:	
параметры сети:	
- напряжение, % от Ином	от 90 до 110
- ток, % от Іном для ИК № 1 - 4	от 2 до 120
- ток, % от Іном для ИК № 5 - 8	от 1 до 120
- коэффициент мощности:	
- cosφ	0,8 до 1,0
- частота, Гц	от 49,8 до 50,02
- температура окружающей среды для ТТ и ТН, °С	от +10 до +30
- температура окружающей среды в месте расположения	
счетчиков, °С	от +5 до +30
- температура окружающей среды в месте расположения	
УСПД, °С	от +5 до +30
- температура окружающей среды в месте расположения	
сервера, °С	от +15 до +30
Электросчетчики СЭТ-4ТМ.03М:	
- среднее время наработки на отказ, ч, не менее	165000
- среднее время восстановления работоспособности, ч	2
УСПД:	
- среднее время наработки на отказ, ч, не менее	75000
- среднее время восстановления работоспособности, ч	24
Сервер:	
- среднее время наработки на отказ, ч, не менее	160000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Электросчетчики СЭТ-4ТМ.03М:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сутки, не менее	113
- при отключении питания, лет, не менее	5
УСПД:	
- суточные данные о тридцатиминутных приращениях электро-	
потребления по каждому каналу и электропотребления за месяц	
по каждому каналу и по группам измерительных каналов, суток, не менее	75
- при отключении питания, лет, не менее	10
Сервер:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

Регистрация событий:

в журнале событий счётчика:

- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике;

в журнале УСПД:

- параметрирования;
- пропадания напряжения.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- УСПД;
- сервера.

Защита информации на программном уровне:

- результатов измерений (при передаче, возможность использования цифровой подписи)
 - установка пароля на счетчик;
 - установка пароля на УСПД;
 - установка пароля на сервер.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование компонента	Тип компонента	Количество (шт., экз.)
Трансформаторы тока	ТОП-0,66-5	12
Трансформаторы тока	ТОЛ-СЭЩ-10-21	12
Трансформаторы напряжения	НОЛ-СЭЩ-10-4	12
Счетчики электрической энергии	CЭT-4TM.03M.09	4
Счетчики электрической энергии	CЭT-4TM.03M.01	4
УСПД	ЭКОМ-3000	1
Сервер	HP Proliant DL20 Gen9	1
ПО	ПК «Энергосфера»	1
Методика поверки	МП 201-009-2017	1
Формуляр	5600009800.2017 ФО	1

Поверка

осуществляется по документу МП 201-009-2017 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии Оренбургской СЭС-5. Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 31марта 2017 г.

Основные средства поверки:

- трансформаторы тока по ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторы напряжения по МИ 2845-2003 «ГСИ. Измерительные трансформаторы напряжения $6\sqrt{3}$...35 кВ. Методика поверки на месте эксплуатации»; МИ 2925-2005 «ГСИ. Измерительные трансформаторы напряжения $35...30\sqrt{3}$ кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя. Рекомендация»; и/или по ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;

- счетчики СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145РЭ1, утвержденному руководителем ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- УСПД ЭКОМ-3000 по документу «Устройство сбора и передачи данных «ЭКОМ-3000». Методика поверки. ПБКМ.421459.03 МП»;
 - прибор комбинированный «TESTO» рег. № 38735-08;
 - радиочасы МИР РЧ-01 рег. № 27008-04.
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками АИИС КУЭ.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносят на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе «ГСИ. Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии Оренбургской СЭС-5», зарегистрированном в Федеральном информационном фонде по обеспечению единства измерений № ФР.1.34.2017.26376.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии Оренбургской СЭС-5

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Прософт-Системы»

(ООО «Прософт-Системы»)

ИНН: 6660149600

Адрес: 620102, г. Екатеринбург, ул. Волгоградская, 194а

Телефон: +7 (343) 356-51-11 Факс: +7 (343) 310-01-06 E-mail: <u>info@prosoftsystems.ru</u>

Заявитель

Оренбургский филиал по реализации приоритетных инвестиционных проектов ПАО «Т Плюс»

ИНН: 6315376946

Адрес: 460019, г. Оренбург, ул. Энергетиков, д.1

Юридический адрес: 143421, Московская область, Красногорский район, автодорога «Балтия», территория 26 км бизнес-центр «Рига-Ленд», строение 3

Телефон: +7 (3532) 78-94-59 Факс: +7 (3532) 78-94-07

E-mail: SkSES-frpip@tplusgroup.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы»

Адрес: 119631, г. Москва, ул. Озерная, д.46

Телефон: +7 (495)437-55-77 Факс: +7 (495) 437-56-66 Web-сайт: www.vniims.ru E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа N 30004-13 от 26.07.2013 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

C.C.	Голу	бев
\circ . \circ .	1 031 9	ОСБ

М.п. «____»____2017 г.