ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы виброизмерительные ВИС-32

Назначение средства измерений

Системы виброизмерительные ВИС-32 (далее системы) предназначены для обеспечения многоканальных синхронных измерений (совместно с первичными преобразователями) виброакустических характеристик и характеристик внешнего гидроакустического поля различных объектов с использованием спектрально - корреляционного (в том числе взаимного) анализа.

Описание средства измерений

Принцип действия систем основан на преобразовании аналоговых сигналов, поступающих с первичных измерительных преобразователей (в состав системы не входят), в цифровые коды и их последующей регистрации и обработке по заданным алгоритмам.

Конструктивно система состоит из блока питания и коммутации БПК (аналоговая часть) и переносного компьютера (программно-цифровая часть). БПК состоит из двух независимых модулей, конструктивно выполненных в стандартном корпусе есt 19260 2UB(HH) и обеспечивает питание первичных измерительных преобразователей (ПИП) и согласование аналоговых измерительных сигналов с аналого-цифровым преобразователями (АЦП). К соединителям, расположенным на передней панели модулей БПК подключаются первичные преобразователи. Переносной компьютер с двумя встроенными АЦП предназначен для преобразования аналоговых сигналов в цифровые коды и для работы с установленным программным обеспечением. Система имеет встроенный в переносной компьютер генератор сигналов, разработанный на базе цифроаналогового преобразователя (ЦАП) с собственным программным обеспечением.

Вид климатического исполнения систем УХЛ 4.2 по ГОСТ 15150-69.

Внешний вид систем с указанием мест нанесения знака утверждения типа, знака поверки и пломбировки от несанкционированного доступа приведен на рисунке 1.

Рисунок 1 - Внешний вид систем

Программное обеспечение

Программное обеспечение (ПО) «Комплекс программного обеспечения ВИС-32» МГФК.00584-01 предназначено для управления режимами работы аппаратуры системы, сбора, обработки и отображения измерительной информации.

Дистрибутив ΠO для каждого комплекта аппаратуры системы поставляется на компакт-диске и через сеть интернет не обновляется.

Метрологически значимая часть ПО и измеренные данные не требуют специальных средств защиты от преднамеренных и непреднамеренных изменений.

Идентификационные данные (признаки) ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные (признаки) ПО

Идентификационные данные (признаки)	Комплекс программного обеспечения ВИС-32
Идентификационное наименование ПО	МГФК.00584-01
Номер версии (идентификационный номер) ПО	01
Цифровой идентификатор ПО (контрольная сумма	
исполняемого кода)	-

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню зашиты «низкий» по Р 50.02.077-2014.

Метрологические и технические характеристики

приведены в таблицах 2, 3.

Таблица 2 - Метрологические характеристики систем

Наименование характеристики	Значение
паименование характеристики	характеристики
Количество измерительных каналов	32
Типы входов измерительных каналов:	
- измерительные каналы с недифференциальным входом по напряжению	32
- измерительные каналы с недифференциальным входом по напряжению	
с питанием ПИП типа ІСР	32
Рабочий диапазон частот, Гц:	
- для измерительных каналов с недифференциальным входом по напряжению:	
а) в режиме узкополосного анализа сигналов	от 0,2 до 20000
б) в режиме третьоктавного анализа сигналов	от 0,63 до 31500
- для измерительных каналов с недифференциальным входом по напряжению с питанием ПИП типа ICP:	
а) в режиме узкополосного анализа сигналов	от 0,5 до 20000
б) в режиме третьоктавного анализа сигналов	от 0,63 до 31500
Неравномерность АЧХ для измерительных каналов с недифференциальным	
входом по напряжению в диапазоне частот от 1 до 20000 Гц, дБ, не более	0,2
Спад частотной характеристики для измерительных каналов с недиффе-	
ренциальным входом по напряжению в диапазоне частот от 1 до 0,2 Гц,	
дБ, не более	3
Неравномерность АЧХ для измерительных каналов с недифференциаль-	
ным входом по напряжению с питанием ПИП типа ІСР в диапазоне частот	
от 2 до 20000 Гц, дБ, не более	0,2

Продолжение таблицы 2

Продолжение таолицы 2	Значение
Наименование характеристики	характеристики
Спад частотной характеристики для измерительных каналов с недиффе-	
ренциальным входом по напряжению с питанием ПИП типа ІСР в диапа-	
зоне частот от 2 до 0,5 Гц, дБ, не более	2
Динамический диапазон измерений мощности переменного электриче-	
ского тока в узких полосах частот, дБ, не менее	90
Верхний предел измерения электрического сигнала (относительно 1 мкВ),	
не менее, дБ	130
Пределы допускаемой относительной погрешности измерений мощности	
переменного электрического тока:	
- в узких полосах частот, дБ	$\pm 0,2$
- в третьоктавных полосах частот, дБ	±0,2
Пределы допускаемой относительной погрешности измерений напряже-	
ния переменного электрического тока:	
- в узких полосах частот, дБ	±0,2
- в третьоктавных полосах частот, дБ	±0,2
Коэффициент нелинейных искажений сигнала при максимальном вход-	
ном сигнале 3,162 В (эфф), %, не более	0,002
Межканальная временная задержка при синхронных измерениях, мкс,	
не более	1
Затухание элайзинговой составляющей сигнала в рабочем диапазоне	
частот, дБ, не менее	95
Межканальное переходное затухание, дБ, не менее	90
Разрядность АЦП с параллельным опросом данных по каждому измери-	
тельному каналу	24
Тип генерируемых сигналов встроенного генератора:	
- гармонический;	
- белый гауссовский шум	
Параметры встроенного генератора в режиме формирования гармониче-	
ского сигнала:	
- диапазон частот, Гц	от 0,2 до 30000
- пределы допускаемой относительной погрешности установки частоты	
сигнала, %	$\pm 0,001$
- коэффициент нелинейных искажений, %, не более	0,002
- диапазон действующих напряжений, В	от 0,01 до 3,162
- пределы допускаемой относительной погрешности установки напряже-	
ния переменного тока, %:	
а) в диапазоне частот от 0,2 до 1 Гц включ.	±3
б) в диапазоне частот св. 1 Гц до 20 кГц включ.	±1
в) в диапазоне частот св. 20 до 30 кГц включ.	±2
Параметры встроенного генератора в режиме формирования шумового сигнала:	
- диапазон частот, Гц	от 1 до 30000
- спектральная плотность напряжения шума (при выходном напряжении	
сигнала 1 В), мкВ/√Гц	4226,8±100

Таблица 3 - Основные технические характеристики систем

Наименование характеристики	Значение
патионование характернетики	характеристики
Габаритные размеры БПК (длина \times ширина \times высота), мм, не более	485×275×180
Масса БПК, кг, не более	12
Параметры электропитания:	
- напряжение переменного тока, В	220±22
- частота переменного тока, Гц	50±1
Рабочие условия эксплуатации:	
- температура окружающего воздуха, °С	от 5 до 35
- относительная влажность окружающего воздуха (при температуре ок-	
ружающего воздуха 25 °C), %, не более	80

Знак утверждения типа

наносится в верхнем левом углу формуляра типографским или компьютерным способом, на корпус системы в виде наклейки.

Комплектность средства измерений

Комплект поставки приведен в таблице 4.

Таблица4 - Комплект поставки

Обозначение	Наименование Кол	
изделия	изделия	
	1 Система виброизмерительная ВИС-32 в составе:	1
	1.1 Переносной компьютер iROBO-4000-73i4RH	1
МГФК.468347.073	1.2 Блок питания и коммутации БПК	1
	2 Операционная система Windows 7 32 bit	1
МГФК.00584-01	3 Комплекс программного обеспечения ВИС-32	
МГФК.468831.007	4 Фильтр верхних частот ФВЧ-1	
МГФК.434441.006	5 Переходник	
МГФК.685623.048	6 Жгут сигнальный ЖС	2
	7 Кабель сетевой SC2-1	2
	8 Эксплуатационная документация согласно ведомо-	1
	сти МГФК.411734.064 ВЭ	1
651-16-22 MΠ	9 Методика поверки	1

Примечание.

- 1 Допускается применять другие марки и типы компьютеров, имеющие технические характеристики не хуже чем у промышленного компьютера iROBO-4000-73i4RH.
- 2 По решению Заказчика допускается поставка системы с одним АЦП и одним модулем из состава БПК

Поверка

осуществляется по документу 651-16-22 МП «Системы виброизмерительные ВИС-32. Методика поверки», утвержденному Φ ГУП «ВНИИ Φ ТРИ» 20.12.2016 г.

Основные средства поверки:

- генератор сигналов сложной формы со сверхнизким уровнем искажений DS360, рег. № 45344-10;
 - мультиметр Agilent 3458A, per. № 25900-03;
- аттенюатор образцовый ступенчатый AO-4, рег. № 8491-81, диапазон часто от 0 до 200 кГц; диапазон ослаблений от 0 до 90 дБ
 - частотомер GFC-8270H, рег. № 19818-00.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых систем с требуемой точностью.

Знак поверки наносится на переднюю панель модуля БПК в виде наклейки или оттиска поверительного клейма.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к системам виброизмерительным ВИС-32

Система виброизмерительная ВИС-32. Технические условия МГФК.411734.064 ТУ.

Изготовитель

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт физико-технических и радиотехнических измерений»

ИНН 5044000102

Юридический адрес: 141570, Московская обл., Солнечногорский р-н, рабочий поселок Менделеево, промзона ВНИИФТРИ, корпус 11

Почтовый адрес: 141570, Московская обл., Солнечногорский р-н, п/о Менделеево

Телефон: (495) 526-63-00, факс: (495) 944-52-68

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Φ ГУП «ВНИИ Φ ТРИ»)

Юридический адрес: 141570, Московская обл., Солнечногорский р-н, рабочий поселок Менделеево, промзона ВНИИФТРИ, корпус 11

Почтовый адрес: 141570, Московская обл., Солнечногорский р-н, п/о Менделеево

Телефон: (495) 526-63-00, факс: (495) 944-52-68

E-mail: director@vniiftri.ru

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель	
Руководителя Федерального	
агентства по техническому	
регулированию и метрологии	

		С.С. Голубев
М.п.	« »	2017 г.