ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть - Приволга» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть - Приволга» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень измерительно-информационные комплексы (ИИК), которые включают в себя измерительные трансформаторы тока (далее ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2 4.
- 2-й уровень измерительно-вычислительный комплекс электроустановки (ИВКЭ) АИИС КУЭ, включающий в себя устройство сбора и передачи данных СИКОН С70 (далее УСПД), каналообразующую аппаратуру, устройство синхронизации времени УСВ-3 (далее УСВ).
- 3-й уровень информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, сервер опроса, сервер приложений, сервер резервного копирования, автоматизированные рабочие места персонала (АРМ), сервер точного времени ССВ-1Г и программное обеспечение (далее ПО) ПК «Энергосфера».

Измерительные каналы (далее - ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по измерительным цепям поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Результаты измерений электроэнергии (W, кВт·ч, Q, квар·ч) передаются в целых числах и соотнесены с единым календарным временем.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем - третьем уровне системы выполняется обработка измерительной информации, в частности вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации - участники оптового рынка электрической энергии и мощности через каналы связи.

Данные хранятся в сервере базы данных. Последующее отображение собранной информации происходит при помощи APM. Данные с ИВК передаются на APM, установленные в соответствующих службах, по сети Ethernet. Полный перечень информации, получаемой на APM, определяется техническими характеристиками многофункциональных электросчетчиков и уровнем доступа APM к базе данных и сервера базы данных. ИВК является единым центром сбора и обработки данных всех АИИС КУЭ организаций системы ОАО «АК «Транснефть».

Система осуществляет обмен данными между АИИС КУЭ смежных субъектов по каналам связи Internet в формате xml-файлов.

Передача информации от СБД в программно-аппаратный комплекс АО «АТС» (с учетом агрегации данных по всем АИИС КУЭ ОАО «АК «Транснефть» и АИИС КУЭ смежных субъектов) с электронной цифровой подписью субъекта ОРЭ, в АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом ТСР/IP сети Internet в виде хml-файлов формата 80020 в соответствии с Приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мошности.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы (счетчиков, УСПД и ИВК). Задача синхронизации времени решается использованием службы единого координированного времени UTC. Для его трансляции используется спутниковая система глобального позиционирования ГЛОНАСС/GPS. Синхронизация часов ИВК АИИС КУЭ с единым координированным временем обеспечивается двумя серверами синхронизации времени ССВ-1Г (Госреестр СИ №39485-08), входящими в состав ЦСОД. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети ТСР/IP согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам спутниковой навигационной системы ГЛОНАСС, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянное и непрерывное обновление данных на сервере ИВК.

Устройство синхронизации времени УСВ-3, входящее в состав ИВКЭ обеспечивает автоматическую коррекцию часов УСПД и счетчиков. УСВ-3 синхронизирует собственное си-стемное время к единому координированному времени по сигналам проверки времени, получаемым от GPS-приемника. Коррекция часов УСПД проводится вне зависимости от величины расхождения часов УСПД и времени приемника. Сличение часов счетчиков с часами УСПД осуществляется с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ±1 с, но не чаще одного раза в сутки. Погрешность СОЕВ АИИС КУЭ не превышает ±5 с.

Журналы событий счетчика электроэнергии отражает: время (дата, часы, минуты, секунды) коррекции часов указанных устройств.

Журналы событий сервера БД и УСПД отражают: время (дата, часы, минуты, секунды) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение ПО ПК «Энергосфера» версии не ниже 7.1, в состав которого входят программы, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 - Метрологические значимые модули ПО

_ i would in the posterior is only in the Ajvin in	_
Идентификационные признаки	Значение
Идентификационное наименование ПО	ПК «Энергосфера»
	Библиотека pso_metr.dll
Номер версии (идентификационный номер) ПО	7.1
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B
Алгоритм вычисления цифрового идентификатора ПО	MD5

Оценка влияния ПО на метрологические характеристики СИ - метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3 - 4, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «Высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов и их метрологические характеристики приведены в таблицах 2-4.

Таблица 2 - Состав измерительных каналов АИИС КУЭ

×	1															
Номер ИК	Наименование объекта	TT	ТН	Счётчик	УСПД	Сервер	Вид электро- энергии									
1	2	3	4	5	6	7	8									
1	ПТК «Железнодорожная нефтеналивная эстакада «Кротовка», ЗРУ-6кВ, 1СШ 6 кВ, яч.1	ТОЛ-СЭЩ-10 Кл. т. 0,5S 300/5	ЗНОЛ-СЭЩ-6 Кл. т. 0,5 6000/√3:100/√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0	СИКОН С70	СИКОН С70 BL4	СИКОН С70	СИКОН С70		активная реактивная						
2	ПТК «Железнодорожная нефтеналивная эстакада «Кротовка», ЗРУ-6кВ, 2СШ 6 кВ, яч.2	ТОЛ-СЭЩ-10 Кл. т. 0,5S 300/5	3НОЛ-СЭЩ-6 Кл. т. 0,5 6000/√3:100/√3	СЭТ-4ТМ.03М.01 Кл. т. 0,5S/1,0					СИКОН С70	СИКОН С70	СИКОН С70	СИКОН С70	СИКОН С70	СИКОН С70	СИКОН С70	СИКОН С70
3	ПТК «Железнодорожная нефтеналивная эстакада «Кротовка», ЩСН-0,4 кВ	ТОП-0,66 Кл. т. 0,5S 20/5	-	СЭТ-4ТМ.03М.08 Кл. т. 0,2S/0,5			активная реактивная									

Таблица 3 - Метрологические характеристики ИК (активная энергия)

P	Диапазон тока	Метрологические характеристики ИК					
11 111/		Основная погрешность,			Погрешность в рабочих		
Номер ИК		(± d), %			условиях, (± d), %		
		$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$
		0,9	0,8	0,5	0,9	0,8	0,5
1	2	3	4	5	6	7	8
1, 2	$I_{H_1} \mathcal{E} I_1 \mathcal{E} 1, 2I_{H_1}$	1,1	1,4	2,3	1,9	2,0	2,7
,	$0,2I_{H_1}EI_1 < I_{H_1}$	1,1	1,4	2,3	1,9	2,0	2,7
(TT 0,5S; TH 0,5;	$0,05 \text{IH}_1 \pounds I_1 < 0,2 \text{IH}_1$	1,4	1,7	3,0	2,0	2,3	3,3
Сч 0,5S)	$0,02 \text{IH}_1 \text{£I}_1 < 0,05 \text{IH}_1$	2,5	3,0	5,5	2,9	3,4	5,7
2	$I_{H_1} \mathcal{E} I_1 \mathcal{E} 1, 2I_{H_1}$	0,9	1,0	1,8	1,1	1,2	1,9
3	$0,2I_{H_1}$ £ I_1 < I_{H_1}	0,9	1,0	1,8	1,1	1,2	1,9
(ТТ 0,5S; Сч 0,2S)	$0,05 I_{H_1} \pounds I_1 < 0,2 I_{H_1}$	1,3	1,4	2,6	1,4	1,6	2,7
	$0,02 \text{IH}_1 \text{£I}_1 < 0,05 \text{IH}_1$	2,4	2,8	5,3	2,5	2,9	5,3

Таблица 4 - Метрологические характеристики ИК (реактивная энергия)

Метрологические характеристики ИК							
Номер ИК	Диапазон тока	Основная погрешность, (±d), %			Погрешность в рабочих условиях, (±d), %		
		$\cos j =$	cos j =	$\cos j =$	$\cos j =$	$\cos j =$	$\cos j =$
		0,9	0,8	0,5	0,9	0,8	0,5
1	2	3	4	5	6	7	8
1, 2	IH1£I1£1,2IH1	2,7	2,0	1,5	4,3	3,8	3,6
	$0,2I_{H_1} \pounds I_1 < I_{H_1}$	2,7	2,0	1,5	4,3	3,8	3,6
(TT 0,5S; TH 0,5;	$0,05 I_{H_1} \mathcal{E} I_1 < 0,2 I_{H_1}$	3,6	2,6	1,7	4,8	4,1	3,7
Сч 1)	$0,02 \text{IH}_1 \text{£I}_1 < 0,05 \text{IH}_1$	6,5	4,6	2,9	7,3	5,6	4,3
2	Ін ₁ £І ₁ £1,2Ін ₁	1,9	1,6	1,0	2,5	2,2	1,8
3	$0,2I_{H_1} \pounds I_1 < I_{H_1}$	1,9	1,6	1,0	2,5	2,2	1,8
(ТТ 0,5Ѕ; Сч 0,5)	$0,05 \text{IH}_1 \text{£I}_1 < 0,2 \text{IH}_1$	2,9	2,4	1,4	3,3	2,7	2,0
(11 0,55, 0 10,5)	$0,02I_{H_1}$ £ I_1 < $0,05I_{H_1}$	5,4	4,4	2,6	5,6	4,6	3,0

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
- 3. Допускается замена измерительных трансформаторов, счетчиков, УСПД на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном в АО «Транснефть Приволга» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.
- 4.. Погрешность в рабочих условиях указана для температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 3 от плюс 5 до плюс 35 °C.

Основные технические характеристики ИК приведены в таблице 5.

Таблица 5 - Основные технические характеристики ИК

Габлица 5 - Основные технические характеристики ИК	
Наименование характеристики	Значение
Количество измерительных каналов	3
Нормальные условия:	
параметры сети:	
- напряжение, % от $U_{\mbox{\tiny HOM}}$	от 98 до102
- Tok, $\%$ ot I_{hom}	от 100 до 120
- коэффициент мощности	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от $U_{\scriptscriptstyle { ext{HOM}}}$	от 90 до 110
- Tok, $\%$ ot I_{hom}	от 2 до 120
- коэффициент мощности cosj (sinj)	от 0,5 $_{\rm инд}$. до 0,8 $_{\rm emk}$
- температура окружающей среды для ТТ и ТН, °С	от +45 до -40
- температура окружающей среды в месте расположения	от -40 до +60
электросчетчиков и УСПД, °С	
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики:	4.40000
- среднее время наработки на отказ, ч, не менее	140000
- среднее время восстановления работоспособности, ч	48
УСПД:	70000
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч COEB:	2
- среднее время наработки на отказ, ч, не менее	45000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	264599
- среднее время восстановления работоспособности, ч	0,5
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух направлени-	
ях, сутки, не менее	113
- при отключении питания, лет, не менее	10
УСПД:	
- тридцатиминутный профиль нагрузки в двух направлени-	4~
ях, сутки, не менее	45
- при отключении питания, лет, не менее	10
Сервер:	
- хранение результатов измерений и информации состоя-	2.5
ний средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений.

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть - Приволга» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка» типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 6.

Таблица 6 - Комплектность АИИС КУЭ

Наименование	Тип	Рег. №	Количество,
Паимспование	ТИП	1 C1 . J\⊻	шт.
Трансформатор тока	ТОЛ-СЭЩ-10	51623-12	6
Трансформатор тока	ТОП-0,66	47959-16	3
Трансформатор напряжения	ЗНОЛ-СЭЩ-6	35956-07	6
Счётчик электрической энергии	CЭT-4TM.03M.08	36697-12	1
многофункциональный		2007, 12	-

Наименование	Тип	Рег. №	Количество, шт.
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М.01	36697-08	2
Устройство сбора и передачи данных	СИКОН С70	28822-05	1
Устройство синхронизации времени	УСВ-3	51644-12	1
Сервер точного времени	ССВ-1Г	39485-08	2
Сервер с программным обеспечением	ПК "Энергосфера"	1	1
Методика поверки	МП 206.1-007-2017	-	1
Формуляр	-	-	1
Руководство по эксплуатации	-	-	1

Поверка

осуществляется по документу МП 206.1-007-2017 «Система автоматизированная информационноизмерительная коммерческого учета электрической энергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть - Приволга» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка». Методика поверки», утвержденному ФГУП «ВНИИМС» 26.01.2017 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчиков СЭТ-4ТМ.03М по документу ИЛГШ.411152.145 РЭ1 Методика поверки», согласованной с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 04 декабря 2007 г.;
- счетчиков СЭТ-4ТМ.03М по документу ИЛГШ.411152.145 РЭ1 Методика поверки», утвержденному ФБУ «Нижегородский ЦСМ» в 2012 г.;
- СИКОН С70 по документу «Контроллеры сетевые индустриальные СИКОН С70. Методика поверки ВЛСТ 220.00.00 И1», утвержденному ФГУП «ВНИИМС» в 2005 г.;
- УСВ-3 по документу «Инструкция. Устройство синхронизации времени УСВ-3. Методика поверки ВЛСТ. 240.00.000 МП», утвержденному ГЦИ СИ ФГУП «ВНИИФТРИ» в 2012 г.;
- ССВ-1 Γ по документу «Источники частоты и времени/ серверы точного времени ССВ-1 Γ . Методика поверки.» ЛЖАР.468150.003-08 МП,утвержденным Γ ЦИ СИ «СвязьТест» ФГУП ЦНИИС в ноябре 2008 Γ .;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от -20 до + 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 до 19,99 мТл.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиска клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений количества электрической энергии (мощности) с использованием системы автоматизированной информационно-измереительной коммерческого учета электроэнергии ПАО «Транснефть» в части АО «Транснефть - Приволга» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка» (АИИС КУЭ ПАО «Транснефть» в части АО «Транснефть - Приволга» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка»)», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть - Приволга» по ПТК «Железнодорожная нефтеналивная эстакада «Кротовка»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Автоматизированные системы в энергетике» (ООО «Автоматизированные системы в энергетике»)

ИНН 3329074523

Юридический адрес: 600031, г. Владимир, ул. Юбилейная, д.15 Адрес: 600026, г.Владимир, ул.Тракторная д.7А, корп. 1, пом. 18

Тел.: 89157694566

E-mail: autosysen@gmail.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119631, г. Москва, ул. Озерная, д.46 Телефон/факс: (495)437-55-77 /(495) 437 56 66

E-mail: <u>office@vniims.ru</u> Web-сайт: www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев