УТВЕРЖДАЮ Заместитель директора ФГУП «ВНИИОФИ»

Н. П. Муравская

2016 г.

Государственная система обеспечения единства измерений

КОМПЛЕКТ СПЕЦИАЛИЗИРОВАННЫХ СРЕДСТВ ИЗМЕРЕНИЙ ИМ-ПУЛЬСОВ ТОКА

МЕТОДИКА ПОВЕРКИ МП 29.М12-16

1 p.65339-16

Главный метролог ФГУП «ВНИИОФИ»

С.Н. Негода

«<u>Об»</u> <u>Об</u> <u>2016</u> г.

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на «Комплект специализированных средств измерений импульсов тока», зав. № 01032016 (далее по тексту комплект) производства Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт оптико-физических измерений» (ФГУП «ВНИИОФИ»), Россия, и устанавливает методы и средства первичной и периодической поверок.
 - 1.2 Интервал между поверками 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении первичной и периодической поверок должны быть выполнены следующие операции, указанные в таблице 1. Таблица 1

	Номер пункта	Проведение	е операции при
Наименование операции	методики поверки	первичной поверке	периодической поверке
Внешний осмотр	8.1	Да	Да
Опробование	8.2	Да	Да
Определение метрологических характеристик	8.3		
Определение коэффициентов преобра- зования	8.3.1	Да	Да
Определение погрешности коэффициента преобразования	8.3.2	Да	Да
Определение диапазон измеряемых значений амплитуды импульсов силы тока	8.3.3	Да	Да
Определение времени нарастания переходной характеристики	8.3.4	Да	Да
Определение относительной погрешности измерений времени нарастания переходной характеристики	8.3.5	Да	Да

- 2.2 При получении отрицательных результатов при проведении любой операции поверка прекращается.
- 2.3 Поверку средств измерений осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.
- 2.4 Метрологические характеристики по таблице 1 допускается определять не в полном объеме, при этом поверка проводится по сокращенной программе. Объем поверочных работ определяется совместным решением (или по договоренности) между заказчиком и исполнителем проведения работ.

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении первичной и периодической поверок должны быть использованы следующие средства, указанные в таблице 2. Таблица 2

Номер пункта мето- дики поверки	Наименование и тип (условное обозначение) основного или вспомо- гательного средства поверки; обозначение нормативного документа, регламентирующего технические требования и (или) метрологиче- ские и основные технические характеристики средства поверки
------------------------------------	---

8.3.1 - 8.3.5

1 Государственный первичный специальный эталон единицы импульсного тока молниевого разряда в диапазоне от 1 до 100 кА ГЭТ 202-2012. ГОСТ 8.644-2014

Основные метрологические характеристики:

- диапазон значений амплитуд импульсного тока молниевого разряда: от 1 до 100 кA;
- диапазон значений длительностей фронта воспроизводимых импульсов тока между уровнями 0,1 0,9 от установившегося значения: от 0,14 до 10 мкс;
- диапазон значений длительности воспроизводимых импульсов тока на уровне 0,5 от установившегося значения: от 10 до 36 мкс;
- предел допускаемого СКО воспроизведения единицы импульсного тока: 0,3 %;
- ${\rm HC\Pi}$ воспроизведения единицы импульсного тока не превышает 3.2 %.
- 2 Государственный вторичный эталон единицы силы импульсного тока в диапазоне от 0.1 до $1.0\cdot10^4$ A. 2.1.ZZA.0057.2015. ГОСТ 8.644-2014

Основные метрологические характеристики:

- диапазон значений силы импульсного тока, в котором эталон хранит и передает значение величины от 0.1 до $1.0 \cdot 10^4$ A;
- длительность фронта воспроизводимых импульсов силы тока между уровнями 0.1-0.9 от амплитуды от $1.0\cdot10^{-8}$ до $1.0\cdot10^{-6}$ с;
- длительность воспроизводимых импульсов напряженностей электрического и магнитного полей на уровне 0,5 от амплитуды составляет от $2,0\cdot10^{-7}$ до $5,0\cdot10^{-4}$ с;
- доверительные границы воспроизведения единицы импульсного тока (погрешности измерений коэффициента преобразования преобразователя) и относительной погрешности воспроизведения длительности фронта импульсов от 4,0 до 9,0 %.
- 3 Осциллограф цифровой Tektronix TDS 784D, ГР СИ № 19296-00.

Основные метрологические характеристики:

- полоса пропускания: 1 ГГц;
- диапазон коэффициента отклонения: 1 мВ/дел 10 В/дел;
- диапазон коэффициента развертки: 200 пс/дел 10 с/дел:
- пределы допускаемой относительной погрешности коэффициента отклонения: ± 1 %;
- входное сопротивление: 50 Ом/1 МОм.
- 4 Генератор испытательных импульсов И1-15, ГРСИ №7513-79

Основные метрологические характеристики:

- длительность фронта импульсов между уровнями 0,1-0,9 от амплитуды, не более 0,25 нс;
- длительность импульсов не менее 10 мкс;
- неравномерность вершины не более 2 %;
- погрешность установления амплитуды ± 10 %;
- амплитуда выходных импульсов на нагрузке 50 Ом, не менее 10 В.

5 Вольтметр универсальный В7-54/3, ГРСИ №15250-96

Основные метрологические характеристики:

- диапазоны измерений: постоянное напряжение до 1000 В, погрешность не более \pm 0,008 %; переменное напряжение: до 700 В, частота

10 Гц — 1МГц, погрешность измерения среднеквадратического значения не более ± 1,0 %; — постоянный ток: до 2 А, погрешность не более 0,04 %; переменный ток: до 2 А, частота 20 Гц — 5 кГц, погрешность измерения средне-
квадратического значения не более 0,6 %; – электрическое сопротивление до 20 МОм, погрешность не более
0,05 %

- 3.2 Допускается применение других средств поверки, не приведенных в таблице 2, но обеспечивающих определение (контроль) метрологических характеристик поверяемых средств измерений с требуемой точностью.
- 3.3 Средства измерений, указанные в таблице 2, должны быть поверены и аттестованы в установленном порядке.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 К работе с комплектом допускаются лица, изучившие настоящую методику поверки и руководства по эксплуатации, имеющие удостоверение квалификационной группы на право работы с электроустановками напряжением свыше 1000 В в соответствии с правилами по охране труда и эксплуатации электроустановок, указанных в приложении к приказу Министерства труда и социальной защиты РФ от 24.07.13 № 328H.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 Перед началом поверки необходимо изучить руководства по эксплуатации комплекта и настоящую методику поверки.
- 5.2 При проведении поверки следует соблюдать требования, установленные правилами по охране труда и эксплуатации электроустановок, указанных в приложении к приказу Министерства труда и социальной защиты РФ от 24.07.13 № 328Н. Оборудование, применяемое при испытаниях, должно соответствовать требованиям ГОСТ 12.2.003-91. Воздух рабочей зоны должен соответствовать ГОСТ 12.1.005-88 при температуре помещения, соответствующей условиям испытаний для легких физических работ.
- 5.3 Система электрического питания приборов должна быть защищена от колебаний и пиков сетевого напряжения, искровые генераторы не должны устанавливаться вблизи приборов.
- 5.4 При выполнении измерений должны соблюдаться требования, указанные в «Правилах техники безопасности при эксплуатации электроустановок потребителей», утвержденных Госэнергонадзором, а также требования руководства по эксплуатации комплекта.
- 5.5 Помещение, в котором проводится поверка, должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

6 УСЛОВИЯ ПОВЕРКИ

6.1 При проведении поверки соблюдают следующие условия:

_	температура окружающего воздуха, °С	от 15 до 25;
	относительная влажность воздуха, %	от 50 до 80;
_	атмосферное давление, кПа	от 96 до 104;
	напряжение питания сети, В	от 200 до 240;
_	частота сети. Ги	от 49 до 51.

- 6.2 Помещение, где проводится поверка, должно быть чистым и сухим, свободным от пыли, паров кислот и щелочей.
- 6.3 В помещении, где проводится поверка, должны отсутствовать механические вибрации и посторонние источники излучения, а также мощные постоянные и переменные электрические и магнитные поля.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Проверьте наличие средств поверки по таблице 2, укомплектованность их документацией и необходимыми элементами соединений.
- 7.2 Используемые средства поверки разместите, заземлите и соедините в соответствии с требованиями их технической документации.
- 7.3 Подготовку, соединение, включение и прогрев поверяемого средства и средств поверки, регистрацию показаний и другие работы по поверке произведите в соответствии с документацией на указанные средства.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

8.1.1 Проверяют комплектность комплекта в соответствии с его руководством по эксплуатации КВФШ.411521.003 РЭ.

Комплектность комплекта должна соответствовать таблице 3.

Таблица 3

Наименование	Количество, шт.
Комплект специализированных средств измерений импульсов тока в	
составе:	
– шунт измерительный ШИ, зав. № 01	1
– коаксиальный датчик тока КДТ, зав. № 01	
– коаксиальный датчик тока модифицированный КДТ-М, зав. № 01	
 радиочастотный измерительный кабель длиной 1,8 м 	1
 радиочастотный измерительный кабель длиной 8,0 м 	1
Паспорт КВФШ.411521.003 ПС.	1
Руководство по эксплуатации КВФШ.411521.003 РЭ.	1
Методика поверки МП 029.М12-16	1

- 8.1.2 Проверяют комплект на отсутствие механических повреждений и ослаблений элементов конструкции, на соответствие расположения надписей и обозначений руководства по эксплуатации КВФШ.411521.003 РЭ.
- 8.1.3 Комплект признается прошедшим операцию поверки, если не обнаружены несоответствия комплектности, механические повреждения, ослабления элементов конструкции, неисправности разъемов.

8.2 Опробование

- 8.2.1 При опробовании комплекта оценивают отклонение значения коэффициента преобразования изделий из его состава: шунта измерительного ШИ, коаксиального датчика тока КДТ и коаксиального датчика тока модифицированного КДТ-М от паспортного значения с целью выявления внутренних скрытых дефектов (нарушение целостности сборки), возникших при транспортировании или эксплуатации, препятствующих дальнейшей эксплуатации комплекта.
- 8.2.2 Первоначально определяют с помощью вольтметра B7-54/3 значение сопротивления проходной нагрузки $R_{\text{наг.50}}$, а с помощью осциллографа Tektronix TDS 784D амплитуду $U_{\text{ген.И1-15}}$ и длительность фронта $T_{\text{фр.ген.И1-15}}$ импульсов между уровнями 0,1-0,9 от амплитуды на выходе генератора И1-15. Далее с помощью 50-омного соединительного кабеля и винтовых соединений к шунту измерительному ШИ подключают, используя проходную нагрузку $R_{\text{наг.50}}$ выход генератора И1-15 с установленной амплитудой выходных импульсов $U_{\text{ген.И1-15}}$ (см. рисунок 1).

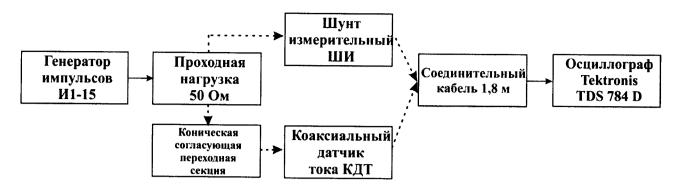


Рисунок 1 — Схема определения метрологических характеристики шунта измерительного ШИ и коаксиального датчика тока КДТ

Выходной разъем ШИ соединяют с помощью радиочастотного измерительного кабеля длиной 1,8 м с входом осциллографа Tektronix TDS 784D с установленным входным сопротивлением 50 Ом. По формуле (1) определяют величину силы импульсного тока, протекающего через шунт:

$$I_{IIIM} = U_{\text{BMX},M1-15} / R_{\text{Haz},50}. \tag{1}$$

- 8.2.3 Воспроизводят импульсы напряжения на выходе генератора И1-15 и регистрируют среднее значение амплитуды $U_{\text{ШИ.имп.ср}}$ на выходе шунта ШИ.
- 8.2.4 По формуле (2) вычисляют значение коэффициента преобразования шунта ШИ:

$$K_{np.IIII} = U_{IIII.umn.cp} / I_{IIIII}$$
 (2)

- 8.2.5 Аналогичные работы по п.п. 8.2.2 8.2.4 проводят для коаксиального датчика тока КДТ, при этом дополнительно используют коническую согласующую переходную секцию (см. рисунок 1).
- 8.2.6 Опробование коаксиального датчика тока модифицированного КДТ-М проводят в соответствии со схемой, приведенной на рисунке 2.

Рисунок 2 — Схема определения метрологических характеристики шунта коаксиального датчика тока модифицированного КДТ-М

Подсоединяют с помощью конической согласующей переходной секции датчик тока КДТ-М к токообразующей системе из состава формирователя импульсного тока малой амплитуды государственного вторичного эталона (ВЭ) единицы силы импульсного тока в диапазоне от $0.1 \text{ до } 1.0 \cdot 10^4 \text{ A } 2.1.ZZA.0057.2015$.

Воспроизводят импульсы силы тока с амплитудой $I_{BЭ.ПС}$ в рабочей зоне токообразующей системы ВЭ и регистрируют среднее значение амплитуды $U_{KДТ-M.имп.ср}$ на выходе датчик тока КДТ-М.

По формуле (3) вычисляют значение коэффициента преобразования датчика тока КДТ-М:

$$K_{np,K \not \Pi T-M} = U_{K \not \Pi T-M.umn.cp} / I_{B \ni .\Pi C.}$$
 (3)

Указанные выше работы также допускается проводить с использованием ГПСЭ ГЭТ 202-2012 в первом режиме работы эталона.

8.2.7 Комплект признается прошедшим операцию поверки, если вычисленные значения коэффициентов преобразования шунта измерительного ШИ, коаксиального датчика тока КДТ и коаксиального датчика тока модифицированного КДТ-М отличаются от указанных в паспорте значений не более чем на $\pm~10~\%$.

8.3 Определение метрологических характеристик

8.3.1 Определение коэффициентов преобразования

8.3.1.1 Шунт измерительный ШИ

Проводят работы по п.п. 8.2.2. – 8.2.3, воспроизводят импульсы напряжения на выходе генератора И1-15 и обеспечивают регистрацию импульсов на выходе шунта ШИ.

По полученной осциллограмме при помощи маркеров осциллографа на вершине импульса измеряют две величины: $V_{\rm max}$ — соответствующую максимальному значению амплитуды и $V_{\rm min}$ — соответствующую минимальному значению амплитуды (см. рисунок 3).

Описанные измерения производят n=10 раз и по формулам (4) вычисляют средние арифметические значения \overline{V}_{\max} и \overline{V}_{\min} :

$$\overline{V}_{\text{max}} = \frac{1}{n} \sum_{i=1}^{n} V_{\text{max}_{i}}, \quad \overline{V}_{\text{min}} = \frac{1}{n} \sum_{i=1}^{n} V_{\text{min}_{i}},$$
 (4)

где $V_{\max i} - i$ -е измерение напряжения $V_{\max i}$

 V_{\min_i} – *i*-е измерение напряжения V_{\min_i}

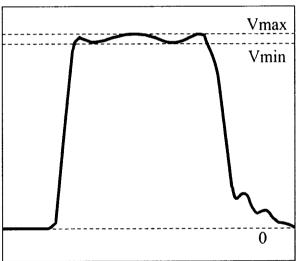


Рисунок 3 — Эпюра напряжения на выходе шунта при определении коэффициента преобразования

Значение коэффициента преобразования шунта ШИ определяют по формуле (5):

$$K_{np} = \frac{\overline{V}_{\text{max}} + \overline{V}_{\text{min}}}{2 \cdot I_{\mu\mu\mu}} \tag{5}$$

Далее вычисляют средние квадратические отклонения (СКО) $S(\overline{V}_{\max})$ и $S(\overline{V}_{\min})$ измерений максимального V_{\max} и минимального V_{\min} значений напряжения на выходе шунта по формуле (6):

$$S(\overline{V}_{\text{max}}) = \frac{\sqrt{\sum_{i=1}^{n} (V_{\text{max}_{i}} - \overline{V}_{\text{max}})^{2}}}{n(n-1)}, \ S(\overline{V}_{\text{min}}) = \frac{\sqrt{\sum_{i=1}^{n} (V_{\text{min}_{i}} - \overline{V}_{\text{min}})^{2}}}{n(n-1)}$$
(6)

Из полученных значений $\{S(\overline{V}_{max}) \text{ и } S(\overline{V}_{min})\}$ выбирают максимальное и принимают это значение в качестве оценки СКО для $S(K_{nn})$.

Доверительные границы случайной погрешности результата измерений коэффициента преобразования шунта ШИ (без учета знака) при доверительной вероятности P = 0.95 и n = 10 находят по формуле (7):

$$\varepsilon_{Knp} = 2,262 \cdot S(K_{\Pi P}) \cdot \frac{100\%}{\overline{V}_{\text{max/min}}}, \tag{7}$$

где $\overline{V}_{\max/\min}$ — соответствующее среднее значение, относящееся к выбранному в качестве максимальной величины $S(\overline{V}_{\max})$ или $S(\overline{V}_{\min})$.

8.3.1.2 Коаксиальный датчик тока КДТ

Определение коэффициента преобразования и доверительных границ случайной погрешности результата измерений коэффициента преобразования коаксиального датчика тока КДТ проводят аналогично по п.8.3.1.1 с использованием конической согласующей переходной секции.

8.3.1.3 Коаксиальный датчик тока модифицированный КДТ-М

Проводят работы по п.8.2.6, воспроизводят импульсы силы тока в рабочей зоне токообразующей системы ВЭ и обеспечивают регистрацию импульсов на выходе датчика тока КДТ-М. Указанные работы также допускается проводить с использованием ГПСЭ ГЭТ 202-2012 в первом режиме работы эталона.

Определение коэффициента преобразования и доверительных границ случайной погрешности результата измерений коэффициента преобразования коаксиального датчика тока модифицированного КДТ-М проводят аналогично по п.8.3.1.1.

8.3.1.4 Комплект признается прошедшим операцию поверки, если вычисленные значения коэффициентов преобразования шунта измерительного ШИ, коаксиального датчика тока КДТ и коаксиального датчика тока модифицированного КДТ-М соответствуют таблице 4.

Таблица 4

Наимоноромно усраждеристики	Зна	чение характерист	гики
Наименование характеристики	ШИ	КДТ	КДТ-М
Коэффициент преобразования, В/А	$3,2\cdot10^{-2}\pm10\%$	$2.5 \cdot 10^{-1} \pm 10 \%$	$6.5 \cdot 10^{-3} \pm 10 \%$

8.3.2 Определение погрешности коэффициента преобразования

8.3.2.1 Шунт измерительный ШИ

- 8.3.2.1.1 Доверительные границы случайной составляющей погрешности измерений коэффициента преобразования в предположении о нормальном распределении результатов измерений входящих величин при доверительной вероятности P=0,95 и числе измерений n=10 принимают равными значению, полученному в п.8.3.1.1.
- 8.3.2.1.2 Доверительные границы неисключенной систематической составляющей погрешности измерений коэффициента преобразования при доверительной вероятности P=0.95 и поправочном коэффициенте k=1.1 определяют по формуле (8):

$$\Theta_{Knp} = 1.1 \sqrt{\Theta_{H1-15}^2 + \Theta_{Rmaz50}^2 + \Theta_{V \max}^2 + \Theta_{V \min}^2},$$
(8)

где $\Theta_{\text{ИI-15}} = 1$,0 % — относительная погрешность осциллографа Tektronix TDS 784D при определении амплитуды $U_{\text{ген,ИI-15}}$ импульсов напряжения на выходе генератора И1-15;

 $\Theta_{\text{RHar},50} = 0{,}05$ %— относительная погрешность вольтметра B7-54/3 при определении значение сопротивления проходной нагрузки $R_{\text{Har},50}$;

 $\Theta_{Vmax} = 1$,0 % — относительная погрешность осциллографа Tektronix TDS 784D при определении максимальной амплитуды V_{max} импульсов напряжения на выходе шунта ШИ;

 Θ_{Vmin} = 1 ,0 % – относительная погрешность осциллографа Tektronix TDS 784D при определении минимальной амплитуды V_{min} импульсов напряжения на выходе шунта ШИ;

8.3.2.1.3 Доверительные границы погрешности измерений коэффициента преобразования вычисляют по полученным значениям случайной и неисключенной систематической погрешности в соответствии с ГОСТ 8.736-2011 «ГСИ. Измерения прямые многократные. Методы обработки результатов наблюдений. Основные положения» по формуле (9):

$$\delta_{Knp} = K \cdot S_{\Sigma}, \tag{9}$$

где K – коэффициент, зависящий от соотношения случайной составляющей погрешности и $HC\Pi$,

 S_{Σ} – суммарное среднее квадратическое отклонение измерения коэффициента преобразования, определяемое по формуле (10):

$$S_{\Sigma} = 1, 1\sqrt{S_{\Theta}^2 + S(K_{np})^2} , \qquad (10)$$

где S_{Θ} - СКО НСП измерений коэффициента преобразования, вычисляемое по формуле (11):

$$S_{\Theta} = \frac{\Theta_{Knp}}{1,1\sqrt{3}},\tag{11}$$

Коэффициент K вычисляют по формуле (12):

$$K = \frac{\varepsilon_{Knp} + \Theta_{Knp}}{S(K_{np}) + S_{\Theta}}, \tag{12}$$

- 8.3.2.2 Коаксиальный датчик тока КДТ
- 8.3.2.2.1 Доверительные границы случайной составляющей погрешности измерений коэффициента преобразования в предположении о нормальном распределении результатов измерений входящих величин при доверительной вероятности P=0,95 и числе измерений n=10 принимают равными значению, полученному в п.8.3.1.2.
- 8.3.2.2.2 Доверительные границы неисключенной систематической составляющей погрешности измерений коэффициента преобразования при доверительной вероятности P=0.95 и поправочном коэффициенте k=1,1 определяют аналогично по п.п. 8.3.2.1.2-8.3.2.1.3.
 - 8.3.2.3 Коаксиальный датчик тока модифицированный КДТ-М
- 8.3.2.3.1 Доверительные границы случайной составляющей погрешности измерений коэффициента преобразования в предположении о нормальном распределении результатов

измерений входящих величин при доверительной вероятности P=0,95 и числе измерений n = 10 принимают равными значению, полученному в п.8.3.1.3.

8.3.2.3.2 Доверительные границы неисключенной систематической составляющей погрешности измерений коэффициента преобразования при доверительной вероятности P=0,95 и поправочном коэффициенте k=1,1 определяют по формуле (13):

$$\Theta_{Knp} = 1, 1\sqrt{\Theta_{\Im T}^2 + \Theta_{V \max}^2 + \Theta_{V \min}^2}, \qquad (13)$$

где $\Theta_{\text{ЭТ}} = 4,3$ % — относительная погрешность воспроизведения амплитуды $I_{\text{ВЭ.ПС}}$ импульсов силы тока в рабочей зоне токообразующей системы ВЭ 2.1.ZZA.0057.2015 (или в ГПСЭ ГЭТ 202-2012 в первом режиме работы эталона);

 $\Theta_{Vmax} = 1$,0 % — относительная погрешность осциллографа Tektronix TDS 784D при определении максимальной амплитуды V_{max} импульсов напряжения на выходе КДТ-М;

 $\Theta_{\text{Vmin}} = 1$,0 % — относительная погрешность осциллографа Tektronix TDS 784D при определении минимальной амплитуды V_{min} импульсов напряжения на выходе КДТ-М;

- 8.3.2.3.3 Доверительные границы погрешности измерений коэффициента преобразования вычисляют по полученным значениям случайной и неисключенной систематической погрешности в соответствии с ГОСТ 8.736-2011 «ГСИ. Измерения прямые многократные. Методы обработки результатов наблюдений. Основные положения» аналогично по п.8.3.2.1.3.
- 8.3.2.4 Комплект признается прошедшим операцию поверки, если полученные значения погрешностей коэффициентов преобразования шунта измерительного ШИ, коаксиального датчика тока КДТ и коаксиального датчика тока модифицированного КДТ-М не превышают \pm 10 %. Из полученных значений выбирают максимальное $\Theta_{\text{Кпр.комп.}}$

8.3.3 Определение диапазона измеряемых значений амплитуды импульсов силы тока

- $8.3.3.1~\mathrm{B}$ процессе проведения работ по п.8.3.1.1 устанавливают минимальную амплитуду $I_{\text{мин.ШИ}} = 1~\mathrm{A}$, протекающего тока через шунт ШИ, регистрируют среднее значение амплитуды $U_{\text{ШИ.мин}}$ импульса напряжения на выходе шунта. В соответствии с формулой (2) вычисляют значение коэффициента преобразования шунта ШИ при минимальной амплитуде протекающего тока.
- 8.3.3.2 Устанавливают шунт ШИ в токообразующей системе из состава формирователя импульсного тока большой амплитуды ВЭ 2.1.ZZA.0057.2015. Воспроизводят импульсы силы тока в установке с амплитудой $I_{\text{макс.ШИ}} = 1000$ А и регистрируют среднее значение амплитуды $U_{\text{ШИ.макс}}$ импульса напряжения выходе шунта. В соответствии с формулой (2) вычисляют значение коэффициента преобразования шунта ШИ.
- 8.3.3.3 Аналогичные работы по п.8.3.3.1 проводят для коаксиального датчика тока КДТ, устанавливая последовательно минимальный $I_{\text{мин.КДТ}} = 0,1$ А и максимальный $I_{\text{макс.КДТ}} = 100$ А ток и для коаксиального датчика тока модифицированного КДТ-М, устанавливая последовательно минимальный $I_{\text{мин.КДТ-M}} = 10$ А и максимальный $I_{\text{макс.КДТ-M}} = 10000$ А ток.
- 8.3.3.4 Комплект признается прошедшим операцию поверки, если в диапазоне измеряемых значений амплитуды импульсов силы тока в соответствии с таблицей 5 полученные значения коэффициентов преобразования шунта измерительного ШИ, коаксиального датчика тока КДТ и коаксиального датчика тока модифицированного КДТ-М при минимальном и максимальном токах соответствую значениям, полученным по п.8.3.1.

Таблица 5

Наименование характеристики	Зна	чение характерис	гики
тапменование характеристики	ШИ	КДТ	КДТ-М
Диапазон измеряемых значений	от 1 до 1000	от 0,1 до 100	от 10 до 10000
амплитуды импульсов силы тока, А			

8.3.4 Определение времени нарастания переходной характеристики

8.3.4.1 Шунт измерительный ШИ

- 8.3.4.1.1 Проводят работы по п.п. 8.2.2. 8.2.3. Последовательно воспроизводят 10 импульсов напряжения и регистрируют их с помощью осциллографа Tektronix TDS 784D. С помощью маркеров определяют длительность фронта $T_{\phi_{-}i}$ зарегистрированных импульсов между уровнями 0,1 0,9 от установившегося значения напряжения на выходе шунта ШИ.
- 8.3.4.1.2 Время нарастания переходной характеристики шунта ШИ между уровнями 0,1 0,9 от установившегося значения вычисляют по формуле (14):

$$T_{\mu,\Pi X, \coprod U,i} = \sqrt{T_{\phi_{-}i}^2 - T_{\phi p, eeu, U1-15}^2 - T_{ocu}^2}, \qquad (14)$$

где T_{ϕ_i} — зарегистрированное значение длительности фронта импульсов между уровнями 0,1 - 0,9 от установившегося значения;

 $T_{\phi p. ceh. UI-15} = 0,25$ нс — длительность фронта импульсов между уровнями 0,1-0,9 от амплитуды на выходе генератора И1-15;

 $T_{OCU} = 0,36$ нс — время нарастания переходной характеристики осциллографа Tektronix TDS 784D.

8.3.4.1.3 По формуле (15) вычисляют среднее арифметическое значение $\overline{T}_{\text{н.ПХ.ШИ}}$ времени нарастания переходной характеристики по 10 измерениям.

$$\overline{T}_{n,\Pi X, \coprod M} = \frac{1}{n} \sum_{i=1}^{n} T_{n,\Pi X, \coprod M, i},$$
(15)

где $T_{n,\Pi X, I\!I\!I\!I\!I\!I}$ - i – тый результат измерений,

n – количество измерений.

8.3.4.2 Коаксиальный датчик тока КДТ

Аналогичные работы по п.8.3.4.1 проводят для коаксиального датчика тока КДТ 1 с использованием конической согласующей переходной секции и определяют значение $\overline{T}_{\text{н.ПХ.КДТ}}$ времени нарастания переходной характеристики между уровнями 0,1 - 0,9 от установившегося значения.

- 8.3.4.3 Коаксиальный датчик тока модифицированный КДТ-М
- 8.3.4.3.1 Проводят работы по п. 8.2.6. Последовательно воспроизводят 10 импульсов напряжения и регистрируют их с помощью осциллографа Tektronix TDS 784D. С помощью маркеров определяют длительность фронта $T_{\phi_{_i}}$ зарегистрированных импульсов между уровнями 0.1 0.9 от установившегося значения напряжения на выходе КДТ-М.
- 8.3.4.3.2 Время нарастания переходной характеристики КДТ-М между уровнями 0,1 0,9 от установившегося значения вычисляют по формуле (16):

$$T_{u.\Pi X.KJIT-Mi} = \sqrt{T_{\phi_{-}i}^2 - T_{\phi p.B3}^2 - T_{ocu}^2} , \qquad (16)$$

где $T_{\phi_{-}i}$ — зарегистрированное значение длительности фронта импульсов между уровнями 0,1 - 0,9 от установившегося значения;

 $T_{\phi p.B \ni} = 10$ нс — длительность фронта импульсов тока между уровнями 0,1-0,9 от амплитуды в рабочей зоне токообразующей системы ВЭ 2.1.ZZA.0057.2015;

 $T_{OCU} = 0,36$ нс — время нарастания переходной характеристики осциллографа Tektronix TDS 784D.

8.3.4.3.3~ По формуле (15) аналогично вычисляют среднее арифметическое значение $\overline{T}_{\mu\Pi XK\Pi T-M}$ времени нарастания переходной характеристики КДТ-М по 10 измерениям.

8.3.4.4 Комплект признается прошедшим операцию поверки, если вычисленные значения времени нарастания переходной характеристики между уровнями 0,1 - 0,9 от установившегося значения шунта измерительного ШИ, коаксиального датчика тока КДТ и коаксиального датчика тока модифицированного КДТ-М соответствуют таблице 6.

Таблица 6

••	Знач	чение характерис	тики
Наименование характеристики	ШИ	кдт	КДТ-М
Время нарастания переходной	10	1	50
характеристики между уровнями			
0,1-0,9 от установившегося значения,			
нс, не более			

8.3.5 Определение относительной погрешности измерений времени нарастания переходной характеристики

8.3.5.1 Доверительные границы относительной погрешности измерений времени нарастания переходной характеристики при доверительной вероятности P=0,95 и поправочном коэффициенте k = 1,1 для шунта измерительного ШИ и коаксиального датчика тока КДТ определяют по формуле (17).

$$\Theta_{T_{H,\Pi X,\Pi U,K,\Pi T}} = 1,1\sqrt{\Theta_{\phi p}^2 + \Theta_{H1-15}^2}, \qquad (17)$$

где $\Theta_{\varphi p} = 1,0$ % — относительная погрешность осциллографа Tektronix TDS 784D при определении длительности фронта импульсов между уровнями 0,1 - 0,9 от установившегося значения напряжения на выходе шунта измерительного ШИ (коаксиального датчика тока КДТ);

 $\Theta_{\text{И1-15}}$ = 1,0 % — относительная погрешность осциллографа Tektronix TDS 784D при определении длительности фронта импульсов между уровнями 0,1 - 0,9 от установившегося значения напряжения на выходе генератора И1-15.

8.3.5.2 Доверительные границы относительной погрешности измерений времени нарастания переходной характеристики при доверительной вероятности P=0,95 и поправочном коэффициенте k = 1,1 для коаксиального датчика модифицированного тока КДТ-М определяют по формуле (18).

$$\Theta_{T_{H},\Pi X_{\cdot},K \not\Pi T-T} = 1,1\sqrt{\Theta_{\phi p}^2 + \Theta_{B\Im}^2}, \qquad (18)$$

где $\Theta_{\phi p} = 1.0 \%$ – относительная погрешность осциллографа Tektronix TDS 784D при определении длительности фронта импульсов между уровнями 0.1 - 0.9 от установившегося значения напряжения на выходе шунта измерительного ШИ (коаксиального датчика тока КДТ);

 $\Theta_{\mathrm{B}3}=4,5~\%$ — относительная погрешность воспроизведения длительности фронта импульсов между уровнями 0,1 - 0,9 от установившегося значения в токообразующей системе из состава формирователя импульсного тока малой амплитуды государственного вторичного эталона единицы силы импульсного тока в диапазоне от 0,1 до $1,0\cdot10^4$ A 2.1.ZZA.0057.2015.

- 8.3.5.3 Из полученных значений $\{\Theta_{\mathit{Tn.\Pi X. ШИ. КДТ}},\ \Theta_{\mathit{Tn.\Pi X. КДТ-M}}\}$ выбирают максимальное значение $\Theta_{\mathit{Tn.\Pi X. компз}}$
- 8.3.5.4 Комплект признается прошедшим операцию поверки, если полученное значение $\Theta_{\mathit{Ти.ПX.компл}}$ относительной погрешности измерений времени нарастания переходной характеристики не превышает \pm 10 %.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Комплект прошедший поверку с положительным результатом, признается годным и допускается к применению. На него выдается протокол (в соответствии с приложением А) и свидетельство о поверке установленной формы с указанием полученных по п.п. 8.3.1 8.3.5 фактических значений метрологических характеристик комплекта, наносят знак поверки (место нанесения указано в описании типа) согласно Приказу Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», и комплекс допускают к эксплуатации.
- 9.2 При отрицательных результатах поверки комплект признается негодным, не допускается к применению и на него выдается «Извещение о непригодности» с указанием причин в соответствии с требованиями Приказа Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015 г. Свидетельство о предыдущей поверке и (или) знак поверки аннулируется.

Начальник отдела ФГУП «ВНИИОФИ»

Ведущий инженер ФГУП «ВНИИОФИ»

Ведущий научный сотрудник ФГУП «ВНИИОФИ»

Инженер ФГУП «ВНИИОФИ»

А.В. Иванов

А.Н. Шобина

О.В. Михеев

П.С. Мальцев

ПРИЛОЖЕНИЕ А (обязательное)

протокол

первично	ои / перио	дическои по	верки
OT «	»	201_	_года

TO STUDO BOT IN TOTOLOGY (VOLUME PARTIES	-	
то приводят их перечень (наименовани	я) и типы с разделением знако	м «косая дрооь» /)
8 a B. № №/№	одские номера блоков	
Іринадлежащее	·	
тринадлежащее <u>На</u>	именование юридического лиг	ца, ИНН
Іоверено в соответствии с методикой	поверки «ГСИ К	омплект специализирован
редств измерений импульсов тока. Мето		
Наименование документа	на поверку, кем утвержден (с	огласован), дата
С применением эталонов		
(наимено	вание, заводской номер, разря	нд, класс точности или погрешность)
Іри следующих значениях влияющих фа (приводят перечень и зна	кторов: чения влияющих факторов, н	ормированных в методике поверки)
 температура окружающего возду 	xa. °C	
 относительная влажность воздух 		
– атмосферное давление, кПа	, .,	
 напряжение питания сети, В 		
- -		
 напряжение питания сети, В 		
 напряжение питания сети, В частота сети, Гц Получены результаты поверки ме 	грологических хар	
напряжение питания сети, Вчастота сети, Гц	грологических хара Результат	актеристик: Требования методики поверки
напряжение питания сети, Вчастота сети, ГцПолучены результаты поверки ме		Требования методики
 напряжение питания сети, В частота сети, Гц Получены результаты поверки ме 		Требования методики
напряжение питания сети, Вчастота сети, ГцПолучены результаты поверки ме		Требования методики
напряжение питания сети, Вчастота сети, ГцПолучены результаты поверки ме		Требования методики
напряжение питания сети, Вчастота сети, ГцПолучены результаты поверки ме		Требования методики
 напряжение питания сети, В частота сети, Гц Получены результаты поверки ме 		Требования методики
напряжение питания сети, Вчастота сети, ГцПолучены результаты поверки ме		Требования методики
напряжение питания сети, Вчастота сети, ГцПолучены результаты поверки ме		Требования методики
напряжение питания сети, Вчастота сети, ГцПолучены результаты поверки ме		Требования методики
напряжение питания сети, Вчастота сети, ГцПолучены результаты поверки ме		Требования методики