ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакции, утвержденной приказом Росстандарта № 907 от 02.05.2017 г.)

Тестеры MTS-5800 с транспортным модулем

Назначение средства измерений

Тестеры MTS-5800 с транспортным модулем (далее - тестеры) предназначены для формирования цифрового измерительного сигнала с заданной тактовой частотой на электрических и оптических интерфейсах и измерений джиттера на электрических интерфейсах при тестировании сетей связи.

Описание средства измерений

Принцип действия тестеров основан на:

- воспроизведении эталонной частоты встроенным задающим генератором и формировании измерительных сигналов (для измерений в цифровых системах передачи) с заданными параметрами, включая частоту следования, амплитуду (мощность) импульсов и структуру последовательностей сигналов на электрических и оптических выходах;
- логическом анализе структуры испытательных или рабочих цифровых сигналов, поступающих на электрический или оптический вход тестера, что позволяет регистрировать и анализировать ошибки и аварийные сигналы,
- измерении джиттера измерительного и рабочего цифрового сигнала на электрических интерфейсах,

Результаты анализа (тестирования) и измерения отображаются на цифро-графическом диплее и сохраняются в энергонезависимой встроенной памяти.

Тестеры позволяют выполнять тестирование на электрических и оптических интерфейсах плезиохронной (PDH) и синхронной (SDH) цифровой иерархии, оптической транспортной сети (OTN), сетей Ethernet/IP от 2,048 Мбит/с до 11,1 Гбит/с, в том числе SyncE (синхронный Ethernet) и PTP IEEE 1588v2, сетей Fiber Channel от 1 Гбит/с до 10,5 Гбит/с.

Тестер состоит из базового блока (платформы) в переносном портативном исполнении и встроенного транспортного модуля со съемными оптическими трансиверами (приемопередатчиками) SFP, SFP+. Тестеры имеют несколько конфигураций и программных опций, выбираемых при заказе. Основные элементы управления тестера расположены на сенсорном экране передней панели базового блока, в том числе в виде программных клавиш. Основные соединители, используемые при тестировании, расположены на передней панели транспортного модуля, встроенного в прибор.

Общий вид тестера с транспортным модулем и схема пломбирования от несанкционированного доступа изображены на рисунках 1 и 2 соответственно.

Рисунок 1

место установки этикетки с фирменным знаком для пломбирования

Рисунок 2

Программное обеспечение

Программное обеспечение (ПО) встроенное, с управляющими функциями, подключение ПО для опций выполняется с помощью кода в сервисных центрах фирмы-изготовителя. Идентификационные данные ПО представлены в таблице 1.

Таблица 1 - Идентификационные данные ПО

, , , , , , , , , , , , , , , , , , ,		
Идентификационные данные (признаки)	Значение	
Конфигурации тестера (модели)	5801 / 5802 / 5812 / 5801P / 5802P / 5812P	5811P / 5811PL / 5822P
Идентификационное наименование ПО	BERT	BERT
Номер версии (идентификационный номер) ПО	4.2 и выше	4.1 и выше
Цифровой идентификатор ПО	-	-

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню "высокий" согласно Р 50.2.077-2014. Конструкция тестера исключает возможность несанкционированного влияния на ПО СИ и измерительную информацию. Запись ПО осуществляется в процессе производства. Доступ к внутренним частям прибора, включая процессор, защищен конструкцией тестеров и этикеткой. Модификация ПО возможна только на предприятии изготовителя.

Метрологические и технические характеристики

представлены в таблицах 2 и 3.

Таблица 2 - Метрологические характеристики

Характеристика	Значение			
Пределы допускаемой относительной погрешности				
частоты внутреннего задающего генератора (тактовой				
частоты сигналов):				
- основной (при выпуске из производства)	±1,5×10 ⁻⁶			
- дополнительной (из-за старения), за год	±1×10 ⁻⁶			
Электрические интерфейсы PDH, SDH				
Тип интерфейса	E1(RJ-48)	E3	E4	STM-1e
Тактовая частота $f_{\scriptscriptstyle T}$, М Γ ц	2,048	34,368	139,264	155,520
Амплитуда импульсов, В	$3,0\pm0,3$	$1,0\pm0,1$	1,0±0,1	$1,0\pm0,1$
Максимальное затухание входного сигнала	35	12	12	12
относительно номинального уровня), дБ, не менее	33	12	12	12
Диапазон измерения размаха джиттера, ТИ	0,1-4000			
Пределы допускаемой абсолютной погрешности	±(0,01R Тизм ±W)			
измерения размаха джиттера Тизм, ТИ, где				
R, %, не более	7	8	15	10
W, ТИ, не более	0,04	0,04	0,04	0,07

Окончание таблицы 2

Оптические интерфейсы					
Тип интерфейса (трансивера)					Пределы
Модель	Наименование	Мощность оптического излучения, дБм	Пределы допуска- емой относитель- ной погрешности мощности оптического излучения, дБ	Минимальная входная оптическая мощность, дБм не более	допускаемой относительной погрешности минимальной входной оптической мощности, дБ
CSFPPLUS-1GE- 10GE-3-1	1000BASE LX, 1G-10G BASE-1310 нм- 10 км LR/LW	минус 3,85	±4,35	минус 14,2	±1
CSFPPLUS-10G-3-1	10G Ethernet-SDH-STM-64-1310 нм- 10 км -SR1	плюс 2	±2	минус 11	±1
CSFPPLUS-10G-5-1	10G Ethernet-SDH-STM-64-1550 нм- 80 км -LR1	0	±2	минус 26	±1
CSFP-2G-8-1	1G Ethernet-850 нм- 300 м -SX	минус 4,75	±4,75	минус 17	±1
CSFP-2G-3-1	1G Ethernet-1310 нм- 20 км -LX	минус 7	<u>±</u> 4	минус 19	±1
CSFP-2G-5-1	1G Ethernet-1550 нм- 80 км -ZX	плюс 0,5	±4,5	минус 23	±1
CSFP-2G5-3-1	2.5G-1G Ethernet-SDH- STM-16-1310 нм- 40 км -LR1	плюс 0,5	±4,5	минус 23	±1
CSFP-2G5-3-2	2.5G-1G Ethernet-SDH- STM-16-1310 нм- 10 км -IR1	минус 2,5	±2,5	минус 19	±1
CSFP-2G5-5-1	2.5G-1G Ethernet-SDH- STM-16-1550 нм- 80 км -LR2	плюс 0,5	±2,5	минус 28	±1
CSFP-2G5-5-2	2.5G-1G Ethernet-SDH- STM-16-1550 нм- 15 км -IR2	минус 2,5	±2,5	минус 18	±1
CSFP-622M-3-1	622M-SDH- STM 4-1310 нм- 15 км -IR1	минус 11,5	±3,5	минус 28	±1
CSFP-622M-5-1	622M-SDH- STM 4-1550 нм- 80 км -LR2	минус 0,5	±2,5	минус 28	±1
CSFP-100M-3-1	Fast Ethernet - SDH- STM 1-850 нм- 2 км -FX	минус 17,5	±2,5	минус 29	±1
CSFP-100M-3-2	Fast Ethernet - SDH- STM 1-1310 нм- 10 км -FX	минус 11,5	±3,5	минус 28	±1
CSFP-100M-8-2	125M Fast Ethernet - SDH- STM 1-850 нм- 300 м -FX	минус 7,0	±3,0	минус 24	±1

Таблица 3 - Технические характеристики

Характеристика	Значение		
Voydyn nowy rooton (voyay)	5801 / 5802 /	5801P /5802P /	5811P / 5811PL /
Конфигурации тестера (модели)	5812	5812P	5822P
Габаритные размеры, мм, не более			
- высота	170,2	170,2	177,8
- ширина	213,4	213,4	241,3
- глубина	70,0	89,0	76,2
Масса, кг, не более	1,47	1,72	1,9
Рабочие условия эксплуатации:			
- температура окружающего воздуха, °С	от 0 до плюс 50		
- относительная влажность воздуха, %, не более	от 10 до 90		
Условия транспортирования и хранения:			
- температура окружающей среды, °С	от минус 20 до плюс 60		
- относительная влажность воздуха, %, не более	от 10 до 95		

Питание тестеров осуществляется от сети переменного тока частотой 50 Γ ц и напряжением (100-240) В через фирменный сетевой адаптер и от встроенной аккумуляторной батареи на 12 B, 5A.

Знак утверждения типа

наносится на заднюю сторону прибора в виде наклеиваемой этикетки и на руководство по эксплуатации типографским способом.

Комплектность средства измерений

В комплект поставки входят:

- тестер с выбранной согласно таблице 3 конфигурацией;
- сетевой адаптер (зарядное устройство);
- комплект принадлежностей, включающий измерительные шнуры;
- руководство по эксплуатации на русском языке;
- методика поверки.

Таблица 4 - Конфигурации тестеров

Модель	Конфигурация
MTS-5801	MTS 5800 Прибор с одним портом
MTS-5802	MTS 5800 Прибор с двумя портами
MTS-5812	MTS 5800 Прибор для 10G и с двумя портами
MTS-5801P	MTS 5800 Прибор с одним портом с PDH
MTS-5802P	MTS 5800 Прибор с двумя портами с PDH.
MTS-5812P	MTS 5800 Прибор с двумя портами и для 10G с PDH
MTS-5811P	MTS 5800 V2 Прибор с одним портом на 10G с PDH
MTS-5811PL	MTS 5800 V2 Прибор с одним портом на 10G с PDH
MTS-5822P	MTS 5800 V2 Прибор с двумя портами на 10G с PDH

Поверка

осуществляется по документу МП 65267-16 «Тестеры MTS-5800 с транспортным модулем. Методика поверки», утвержденному Φ ГУП ЦНИИС 20 июня 2016 г.

Основные средства поверки:

- частотомер электронно-счетный Ч3-63/1 (регистрационный № 9084-90);
- осциллограф универсальный двухканальный широкополосный С1-97 (регистрационный № 7464-79);
 - магазин затуханий ТТ-4103/17 (регистрационный № 9629-84);
- измеритель средней мощности оптического излучения Алмаз-21 (регистрационный № 17796-98).
 - аттенюатор оптический измерительный OLA-15, регистрационный № 15807-96;
- анализатор цифровых трактов MP1552 B, регистрационный № 20754-01 на единичный экземпляр № 6100022653: (2-622) МГц, $\pm 0.5 \times 10^{-6}$ f, диапазон вводимого/ измеряемого джиттера 0.5-20/0,001-20 ТИ, погрешность измерения £1,7 %;

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится в виде оттиска поверительного клейма на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к тестерам MTS-5800 с транспортным модулем

ГОСТ 8.129-2013 ГСИ. Государственная поверочная схема для средств измерений времени и частоты.

Техническая документация Viavi Solutions Deutschland GmbH.

Изготовитель

Viavi Solutions Deutschland GmbH, Германия

Адрес: Arbachtalstr. 5, D-72800 Eningen u.A., Germany

Заявитель

Филиал ООО «Виави Солюшнз Дойчланд ГмбХ»

Юр. /Фактический адрес: Россия, 115093, Москва, Павловская ул., 7

ИНН 9909288664

Тел. (495) 956-47-60, факс (495) 956-47-62

Испытательный центр

ФГУП ЦНИИС

Адрес: 111141, Москва, 1-й проезд Перова поля, д. 8

Тел. (495)368-97-70; факс (495)674-00-67

E-mail: metrolog@zniis.ru

Аттестат аккредитации $\Phi\Gamma$ УП «ЦНИИС» по проведению испытаний средств измерений в целях утверждения типа № 30112-13 от 22.03.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»____2017 г.