ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы измерительные СТММ

Назначение средства измерений

Системы измерительные СТММ (далее - системы) предназначены для измерений электрических сигналов, поступающих от первичных измерительных преобразователей (сопротивления одиночных тензорезисторов, отношения выходного напряжения тензорезисторных мостов к напряжению питания и отношения сопротивления одного плеча потенциометра к общему сопротивлению) в процессе статических или ресурсных испытаний механических конструкций на прочность, отображения результатов измерений на мониторе компьютера в реальном масштабе времени с последующей регистрацией и хранением полученной измерительной информации.

Описание средства измерений

Системы состоят из измерительных каналов на базе автономных измерительных модулей МИТР, МИТМ, МИП, МИТМБ, объединенных по локальной сети Ethernet или дополнительно по сети RS-485 (кроме модулей МИТМБ) с персональным компьютером (ПК), с установленной на нем программой обработки данных. Системы могут комплектоваться указанными измерительными модулями в количестве не более 32 штук в любой комплектации. Расположение модулей в системах произвольное.

К измерительным каналам на базе измерительного модуля МИТР подключают одиночные тензорезисторы, с помощью которых измеряют деформации нагруженного объекта. К измерительным каналам на базе измерительных модулей МИТМ и МИТМБ подключают первичные измерительные преобразователи, имеющие в качестве чувствительного элемента тензорезисторные мосты (датчики силоизмерительные тензорезисторные, датчики давления и т.п.). К измерительным каналам на базе измерительного модуля МИП подключают потенциометрические первичные измерительные преобразователи (датчики перемещения, датчики давления и т.п.). Измерительные модули МИТР, МИТМ и МИП состоят из входного мультиплексора, источника питания датчика, измерительного усилителя, аналого-цифрового преобразователя (АЦП) и микропроцессора, управляющего процессом измерения и связью с персональным компьютером. В каждом измерительном канале на базе измерительного модуля МИТМБ для повышения скорости измерения имеется измерительный усилитель, а мультиплексор измерительного модуля коммутирует выходы усилителя к АЦП.

Принцип действия основан на преобразовании в каждом измерительном канале систем аналогового сигнала от первичных преобразователей в цифровой с последующей обработкой микроконтроллером и передачей значений в ПК через интерфейс модуля. В качестве ПК может применяться ПК не ниже Pentium-4 с ОС не ниже Windows-7.

Общий вид систем и места пломбирования приведен на рисунке 1. Пломбы от несанкционированного доступа устанавливаются на винте крепления платы контроллера в каждом измерительном модуле.

Рисунок 1- Общий вид системы измерительной СТММ и схема пломбировки от несанкционированного доступа

Программное обеспечение

Программное обеспечение (далее - ΠO) является автономным, используется на компьютере, входящем в состав СТММ.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается средствами операционной системы, установленной на компьютере (авторизация пользователя при входе в операционную систему). Кроме того, при запуске ПО пользователь должен авторизоваться. Доступ к программному обеспечению контроллеров невозможен без применения специализированного программного обеспечения.

Контроль целостности ПО осуществляется при его запуске. В случае нарушения целостности ПО, пользователь увидит на экране сообщение о неработоспособности ПО.

Идентификация ПО осуществляется путем расчета контрольных сумм файлов, реализующих модули ПО. Расчет производится с помощью программы DivHasher 1.2, полученной с электронного ресурса http://softmydiv.net/win/adload179215-DivHasher.html.

Метрологические и технические характеристики систем указаны с учетом установленного ПО.

Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	CTMM
Номер версии (идентификационный номер) ПО	V3.X*
Цифровой идентификатор ПО	D1ED4A4B
Алгоритм вычисления цифрового идентификатора	CRC 32
программного обеспечения	

^{*} В номере версии знак «Х» может меняться, так как идентифицирует метрологически незначимую часть ПО.

Метрологические и технические характеристики

ления (по умолчанию 100, 200, 350 Ом)

Таблица 2 - Метрологические и технические характеристики		
Параметр	Значение	
Количество измерительных модулей в составе системы	от 1 до 32	
Интерфейс связи измерительных модулей с компьютером	Ethernet, RS485	
Количество измерительных каналов на базе одного измерительного модуля 1)		
МИТР	128	
МИТМ, МИП	96	
МИТМБ	16	
Длина линии связи от измерительных модулей		
МИТР, МИТМ, МИТМБ, МИП до датчиков, м, не более	100	
Время измерения одного измерительного канала на базе модулей МИТР,		
МИТМ, МИП, мс	1	
Время измерения одного измерительного канала на базе модуля МИТМБ, мс	0,2	
Пределы допускаемой приведенной погрешности измерений измерительных		
каналов на базе модулей МИТР, МИТМ, МИТМБ, МИП, % от верхнего зна-		
чений диапазона измерений	±0,2	
Характеристики измерительного канала на базе измерительного модуля МИТР		
Номинальное сопротивление тензорезисторов RH ² , Ом	от 100 до 350	
Диапазоны измерений приращения сопротивления тензорезисторов, Ом	±0,02 RH	
Характеристики измерительного канала на базе измерительного модуля МИТМ		
Номинальное сопротивление тензорезисторных мостов, Ом	от 100 до 800	
Номинальное напряжение питания тензомоста, В	4; 2	
Диапазоны измерений сигналов тензорезисторных мостов, мВ/В	±2; ±4; ±8	
Характеристики измерительного канала на базе измерительного модуля МИТМ		
Номинальное сопротивление тензорезисторных мостов, Ом	от 100 до 800	
Номинальное напряжение питания тензомоста, В	5; 10	
Диапазоны измерений сигналов тензорезисторных мостов, мВ/В	от ±1 до ±10	
Характеристики измерительного канала на базе измерительного модуля МИП	01 =1 40 =10	
Номинальное сопротивление потенциометрических датчиков, кОм	от 1 до 5	
Напряжение питания потенциометрических датчиков, В	5,6	
Диапазон измерений (отношение сопротивления плеча потенциометра к об-	от 0 до 100	
щему сопротивлению), %	01 0 до 100	
Питание измерительных модулей от сети переменного тока:		
Напряжение, В	220±22	
Частота, Гц	50±10	
Потребляемая мощность измерительного модуля, В-А, не более	60	
Габаритные размеры измерительного модуля, мм, не более	485x140x360	
Масса измерительного модуля, кг, не более	9	
Условия эксплуатации		
Температура воздуха, °С	от 15 но 25	
	от 15 до 25 от 30 до 80	
Относительная влажность воздуха, % Атмосферное давление, кПа	от 84 до 107	
	10	
Средний срок службы, лет, не менее	10	
Примечания:	A ATTEMA	
измерительный модуль МИТР подключается к датчикам по трех- или четырех-, МИТМ и		
МИТМБ по шести-, МИП по пятипроводной схеме.		
2) измерительный модуль МИТР может быть настроен на три значения номинал	тыного сопротив-	

Знак утверждения типа

наносят на корпус способом наклейки и на титульные листы эксплуатационной документации типографским способом.

Комплектность средства измерений

Таблица 3 - Комплектность средства измерений

Наименование	Количество,	Примечание
	шт.	
Модуль измерительный МИТР	от 0 до 32	Количество в соответствии с заказом
Модуль измерительный МИТМ	от 0 до 32	Количество в соответствии с заказом
Модуль измерительный МИТМБ	от 0 до 32	Количество в соответствии с заказом
Модуль измерительный МИП	от 0 до 32	Количество в соответствии с заказом
Персональный компьютер	1	
CD с программным обеспечением	1	
Соединительные кабели	комплект	Количество в соответствии с заказом
Коммутатор локальной сети 10/100	от 0 до 9	Количество в соответствии с заказом
BASE-T		
Общий кабель для подключения	комплект	По одному на каждый вид модуля, за
эталонов при поверке		исключением МИТМБ
Руководство по эксплуатации	1	
APHB.125000.002PЭ		
Формуляр АРНВ.125000.002ФО	1	
Методика поверки МП 4.34.001-	1	
2015		

Поверка

осуществляется по документу МП 4.34.001-2015 «Системы измерительные СТММ. Методика поверки», утверждённому руководителем ГЦИ СИ ФГУП «ЦАГИ» 18.12.2015 г.

При проведении поверки используются следующие основные средства поверки:

- Тензокалибратор K3607 с диапазонами измерений ± 1 ; ± 2 ; ± 5 ; ± 10 мВ/В и пределами основной приведенной погрешности ± 0.025 %;
 - Магазин сопротивлений P327, класс точности $0.01/1.5 \cdot 10^6$.

Допускается применять не указанные в перечне СИ, обеспечивающие определение (контроль) метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в разделе 9 документа «Системы измерительные СТММ. Руководство по эксплуатации» АРНВ.125000.002РЭ.

Нормативные и технические документы, устанавливающие требования к системам измерительным **CTMM**

- 1 ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения»
- 2 ГОСТ Р 8.764-2011 «ГСИ. Государственная поверочная схема для средств измерений электрического сопротивления»
 - 3 Система измерительная СТММ. Технические условия. АРНВ.411711.000.000.00 ТУ

Изготовитель

Общество с ограниченной ответственностью «АЭРОТЕСТ» (ООО «АЭРОТЕСТ»)

ИНН 7731625353

Адрес: 121351, г. Москва, ул. Молодогвардейская, д. 57

Телефон (495) 417-46-74, факс. (495) 417-52-65

Адрес в Интернет: www.aerotest-m.ru

Адрес электронной почты: aerotest@inbox.ru

Испытательные центры

Федеральное государственное унитарное предприятие «Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского» (ФГУП «ЦАГИ»)

Адрес: 140180, Московская область, г. Жуковский, ул. Жуковского, д. 1

Телефон: (495) 5564205; факс: (495) 7776332, (495) 5564337

Адрес в Интернет: www.tsagi.ru

Адрес электронной почты: mera@tsagi.ru

Аттестат аккредитации Φ ГУП «ЦАГИ» по проведению испытаний средств измерений в целях утверждения типа РОСС.СОБ.1.00164.2014 от 31.01.2014 г.

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Телефон: (495) 4375577; факс: (495) 4375666

Адрес в Интернет: www.vniims.ru

Адрес электронной почты: office@vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26 июля 2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»____2016 г.