ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы измерительные массы продукта при сливо-наливных операциях в автомобильные и железнодорожные цистерны CMS-C

Назначение средства измерений

Системы измерительные массы продукта при сливо-наливных операциях в автомобильные и железнодорожные цистерны CMS-C предназначены для измерений массы продукта при коммерческом учете.

Описание средства измерений

Системы измерительные массы продукта при сливо-наливных операциях в автомобильные и железнодорожные цистерны CMS-C (далее - ИС) являются проектно-компонуемыми изделиями и построены по иерархическому принципу. Измерительные каналы ИС состоят из следующих компонентов (по ГОСТ Р 8.596):

- 1) измерительные компоненты расходомеры-счетчики массовые OPTIMASS 7000 (расходомеры-счетчики), зарегистрированные в Госреестре средств измерений под номером 50998-12, предназначенные для измерений массового расхода продукта (нижний уровень ИС);
- 2) комплексные компоненты преобразователи измерительные дозирующие Batching Master 210i (преобразователи Batching Master), зарегистрированные в Госреестре средств измерений под номером 61722-15, предназначенные для счета импульсов, вычисления массы продукта, передачи измерительной информации по каналам связи на сервер PITA®, дозирования продукта (средний уровень ИС);
- 3) вычислительные компоненты сервер PITA® и автоматизированные рабочие места (APM) оператора Station_PITA®/Video и Station_SCADA с установленным программным обеспечением (ПО), предназначенным для отображения текущих и архивных данных, управления процессом налива продукта, передачи измерительной информации в вышестоящие и/или смежные системы (верхний уровень ИС);
- 4) связующие компоненты технические устройства и средства связи, используемые для приема и передачи сигналов, несущих измерительную информацию от одного компонента ИС к другому;
 - 5) вспомогательные компоненты источники питания, запорная аппаратура и другое. Структурная схема ИС приведена на рисунке 1.

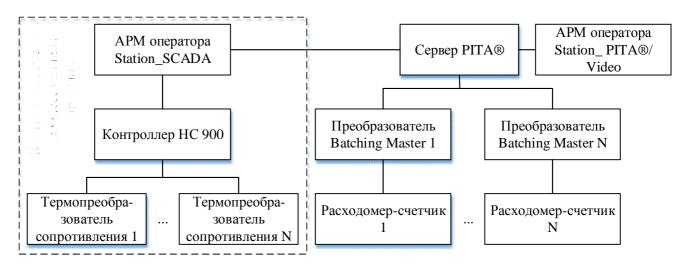
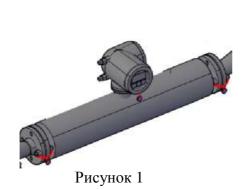


Рисунок 1 - Структурная схема ИС

Принцип действия ИС заключается в следующем. Расходомеры-счетчики измеряют массовый расход продукта. Преобразователи Batching Master измеряют выходные импульсные сигналы расходомеров-счетчиков, выполняют их аналого-цифровое преобразование с последующим вычислением массы продукта и передают данные на сервер PITA®. Сервер РІТА® служит для коммуникации с преобразователями Batching Master и передачи измерительной информации для её отображения в ПО APM оператора Station_PITA®/Video и Station_SCADA.


Для контроля параметров процесса налива продукта проводится измерение плотности, давления и температуры продукта. Расходомеры-счетчики измеряют плотность продукта. На основании результатов измерений массы и плотности продукта преобразователи Batching Master вычисляют объем продукта. Давление продукта измеряют манометры показывающие. Термопреобразователи сопротивления измеряют температуру продукта и передают сигналы электрического сопротивления в контроллер НС 900. Контроллер НС 900 осуществляет передачу данных на APM оператора Station_SCADA и управление исполнительными устройствами, запорной арматурой.

ИС обеспечивает выполнение следующих основных функций:

- измерение массового расхода и массы продукта;
- контроль параметров (плотности, температуры и давления) продукта;
- вычисление объема продукта;
- управление процессом налива продукта в автомобильные и железнодорожные цистерны;
- хранение измеренных и вычисленных значений количества и параметров налива продукта;
 - ведение журнала событий;
- защита оборудования, программного обеспечения и данных от несанкционированного доступа на аппаратном и программном уровнях.

Защита от несанкционированного доступа обеспечивается:

- установкой двух пломб на контровочных проволоках, пропущенных через отверстия шпилек, расположенных на диаметрально противоположных фланцах крепления расходомеровсчетчиков и установкой пломбы на контровочной проволоке, пропущенной через отверстия завернутых винтов крышки расходомеров-счетчиков (рисунок 1);
- установкой пломбы на контровочной проволоке, пропущенной через отверстия шпильки крепления термопреобразователей сопротивления к фланцам (рисунок 2);
- голографической наклейкой на DIP-переключателе, находящемся на обратной стороне преобразователей Batching Master;
- электронным опечатываем ПО, установленного на сервере PITA®, APM оператора Station_PITA®/Video, с помощью электронного ключа.

Программное обеспечение

Структура и назначение ПО ИС приведены в таблице 1.

Таблица 1 - Структура и назначение ПО ИС

Название ПО	Назначение ПО	Место установки
Микропрограмма	Измерение массового расхода, плотности	Расходомеры-
расходомера-счетчика	продукта	счетчики
Встроенное ПО	Измерение массового расхода, массы,	Преобразователи
Batching Master	плотности продукта, осуществление	Batching Master
	дозирования	
PITA® MVA-Register	Прием и запись данных в базу данных	Cервер PITA®
PITA® MVA-Archive	Чтение информации из базы данных	Сервер PITA®
PITA® MVA-Config	Конфигурация ПО «PITA® MVA-Register» и	Сервер PITA®
	ПО «PITA® MVA-Archive»	
PITA® MVA-Counter	Задание значений дозы продукта, передача	Сервер PITA®
	данной информации преобразователям	
	Batching Master	
PITA® MVA-Viewer	Чтение и отображение архивных данных в	АРМ оператора
	виде таблиц, формирование отчетов	Station_PITA®/Video
PITA® LDMS-	Коммуникационный интерфйес сервера	Сервер PITA®
Hardware	РІТА® с контроллерами НС 900 и	
	преобразователями Batching Master	
PITA® LDMS-Load	Оболочка для управления логическими	Сервер PITA®
	операциями, осуществление связи с ПО	
	«PITA® LDMS-Hardware»	
PITA® LDMS-Config	Конфигурация базы данных для ПО «PITA®	АРМ оператора
	LDMS-Explorer»	Station_PITA®/Video
PITA® LDMS-Explorer	Визуализация процесса выполнения заказа	АРМ оператора
		Station_PITA®/Video
Проект SCADA	Фиксация событий в журнале, отображение	АРМ оператора
Experion HS CMS-C-	текущих данных, визуализация процесса	Station_SCADA
XXXXX-X	налива в виде мнемосхемы, управление	
(ххххх-х - определяется	исполнительными устройствами, запорной	
кодом заказа)	арматурой	

Идентификация метрологически значимой части ПО ИС (встроенное ПО расходомеров-счетчиков и преобразователей Batching Master), выполняющей обработку измерительной информации, осуществляется по команде пользователя. Идентификационные данные приведены в таблице 2.

Таблица 2 - Идентификационные данные метрологически значимой части ПО

	Значение	
Идентификационные данные (признаки)	Расходомеров-	Преобразователей
	счетчиков	Batching Master
Идентификационное наименование ПО	ER 3.3.1	Batching Master
Номер версии (идентификационный номер) ПО	3.xx	2.xx
Цифровой идентификатор ПО	B0E4FEC6	

Метрологические характеристики ИС нормированы с учетом влияния ПО ИС. Защита ПО от преднамеренных и непреднамеренных изменений обеспечивается:

- конструкцией (пломбированием) расходомеров-счетчиков и преобразователей Batching Master;
- авторизацией и разграниченией полномочий пользователей для ПО, установленного на сервере PITA®, APM оператора Station_PITA®/Video и Station_SCADA;
- электронным опечатыванием ΠO , установленного на сервере $PITA \otimes APM$ оператора $Station_PITA \otimes Video$.

Уровень защиты по классификации Р 50.2.077-2014:

- ПО расходомеров-счетчиков, преобразователей Batching Master и ПО, установленного на APM оператора Station_SCADA «средний»;
- ПО, установленного на сервере PITA® и APM оператора Station_PITA®/Video «высокий».

Метрологические и технические характеристики

приведены в таблице 3.

Таблица 3 - Метрологические и технические характеристики

Пуодором уругором у мором продуктов ил	am 1 wa 0000000
Диапазон измерений массы продукта, кг	от 1 до 9999999
Пределы допускаемой относительной погрешности измерений	
массы продукта, %	$\pm 0,25$
Параметры продукта:	
- массовый расход продукта, кг/ч	от 20000 до 90000;
- плотность при 20 °C, кг/м ³	от 889 до 1050;
- температура, °С	от 15 до 35;
- кинематическая вязкость, сСт	от 1,248 до 1,480;
- давление паров при 20 °C, Па	от 400 до 440
Условия эксплуатации:	
1) измерительных компонентов:	
- температура окружающего воздуха, °С	от минус 40 до плюс 60;
- относительная важность, %, не более	95;
- напряжение питания переменного тока, В	от 100 до 230;
- частота питания, Гц	от 50 до 60;
2) комплексных компонентов:	
- температура окружающего воздуха, °С	от минус 20 до плюс 60;
- напряжение питания постоянного тока, В	от 18,0 до 28,5;
3) вычислительных компонентов:	
- температура окружающего воздуха, °С	от плюс 10 до плюс 35;
- относительная влажность, %, не более	80;
- напряжение питания переменного тока, В	от 100 до 240;
- частота питания, Гц	50/60
- частота питания, т ц	

Коммуникационные каналы и интерфейсы.

Каналы связи: RS-485, Ethernet TCP/IP. Поддерживаемые протоколы передачи данных: MODBUS RTU, TCP/IP.

Передача сигнала от измерительных к комплексным компонентам ИС осуществляется по контрольным кабелям. Информационный обмен между комплексными компонентами ИС и сервером PITA® осуществляется по интерфейсу MODBUS RTU, между сервером PITA® и APM оператора - по интерфейсу Ethernet TCP/IP.

Среднее время наработки на отказ ИС не менее 225000 ч.

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации и паспорта типографским способом.

Комплектность средства измерений

Комплектность поставки ИС приведена в таблице 4.

Таблица 4 - Комплектность коставки ИС

Наименование	
Система измерительная массы продукта при сливо-наливных операциях в автомобильные и железнодорожные цистерны CMS-C	1
Система измерительная массы продукта при сливо-наливных операциях в автомобильные и железнодорожные цистерны CMS-C. Паспорт	1
Системы измерительные массы продукта при сливо-наливных операциях в автомобильные и железнодорожные цистерны CMS-C. Руководство по эксплуатации	1
Комплект эксплуатационной документации на компоненты ИС	1
Инструкция по эксплуатации PITA® MVA	1
Инструкция по эксплуатации PITA® LDMS	1
Инструкция пользователя PITA® MVA-Viewer	1
Инструкция пользователя PITA® LDMS	
Руководство пользователя APM оператора Station_SCADA	1
МП 229-2016 Системы измерительные массы продукта при сливо-наливных операциях в автомобильные и железнодорожные цистерны CMS-C. Методика поверки	1

Поверка

осуществляется по документу МП 229-2016 «Системы измерительные массы продукта при сливо-наливных операциях в автомобильные и железнодорожные цистерны CMS-C. Методика поверки», утвержденному ФБУ «Томский ЦСМ» в феврале 2016 г. Знак поверки наносится на свидетельство о поверке.

Основное средство поверки:

– генератор импульсов АКИП-3301, диапазон периода от 20 нс до 10000 с (от 0,1 мГц до 50 МГц), пределы допускаемой относительной погрешности установки частоты $\pm 5\cdot 10^{-5}\cdot f$, где f - частота выходного сигнала, диапазон временного интервала T от 20 нс до 10000 с; пределы допускаемой относительной погрешности установки временного интервала $\pm (5\cdot 10^{-5}\cdot T+5$ нс), где T - временной интервал выходного сигнала.

Сведения о методиках (методах) измерений

Метод измерений приведен в документе «Системы измерительные массы продукта при сливо-наливных операциях в автомобильные и железнодорожные цистерны CMS-C. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к системам измерительным массы продукта при сливо-наливных операциях в автомобильные и железнодорожные цистерны CMS-C

- $1~\Gamma OCT~P~8.596-2002~\Gamma CИ.$ Метрологическое обеспечение измерительных систем. Основные положения.
 - 2 Техническая документация PRIMEX Technology GmbH.

Изготовитель

PRIMEX Technology GmbH

Адрес: Germany, 04442 Zwenkau, Spenglerallee 7-9

Телефон: +49 (0) 3 42 03 44 68 60, факс: +49 (0) 3 42 03 44 68 61

E-Mail: <u>info@primex-tech.de</u>

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Томской области» (ФБУ «Томский ЦСМ»)

Юридический адрес: Россия, 634012, Томская обл., г. Томск, ул. Косарева, д.17а Телефон: (3822) 55-44-86, факс: (3822) 56-19-61, голосовой портал (3822) 70-02-72

E-mail: tomsk@tcsms.tomsk.ru

Сайт: http://tomskcsm.ru, http://томскцсм.рф

Аттестат аккредитации ФБУ «Томский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № 30113-13 от 03.06.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____2016 г.