ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Вольтметры универсальные НМС8012, НМС8012-G

Назначение средства измерений

Вольтметры универсальные НМС8012, НМС8012-G (далее по тексту – вольтметры) предназначены для измерения:

- напряжения постоянного тока;
- силы постоянного тока;
- среднего квадратического значения напряжения переменного тока;
- среднего квадратического значения силы переменного тока;
- электрического сопротивления постоянному току;
- электрической емкости.

Описание средства измерений

Вольтметры представляют собой портативные многофункциональные измерительные приборы, конструктивно выполнены в защищенном корпусе, питающиеся от сети переменного тока.

Принцип работы вольтметров заключается в преобразовании входного аналогового сигнала в цифровую форму быстродействующим АЦП, с последующей математической обработкой измеренных величин в зависимости от алгоритма расчета измеряемого параметра и отображении результатов на жидкокристаллическом дисплее.

На лицевой панели вольтметров расположены:

- -жидкокристаллический дисплей;
- функциональные клавиши;
- поворотный переключатель с курсорными клавишами;
- USB разъем;
- входные разъёмы.

На задней панели вольтметров расположены:

- -выключатель питания;
- переключатель напряжения питания;
- разъем питания от сети переменного тока;
- разъемы интерфейсов.

Связь вольтметров с ЭВМ осуществляется с помощью набора интерфейсов USB, VCP, Ethernet, IEEE-488.

Внешний вид вольтметров и место нанесения наклейки со знаком утверждения типа средства представлены на рисунке 1. Схема пломбировки от несанкционированного доступа приведена на рисунке 2.

Различие вольтметров заключается в наличии у модели HMC8012-G интерфейса IEEE-488.

Рисунок 1 – Фотография общего вида вольтметров

Рисунок 2 – Схема пломбирования вольтметров

Программное обеспечение

встроено в защищённую от записи память микроконтроллера, что исключает возможность его несанкционированных настройки и вмешательства, приводящих к искажению результатов измерений.

Метрологические характеристики вольтметров нормированы с учетом влияния программного обеспечения. Идентификационные данные программного обеспечения вольтметров представлены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения вольтметров

Идентификационные данные (признаки)	Значения
1	2
Идентификационное наименование ПО	HMC8012 firmware
Номер версии (идентификационный номер) ПО	1.061
Цифровой идентификатор ПО	_

Уровень защиты программного обеспечения вольтметров от непреднамеренных и преднамеренных изменений «низкий» по Р 50.2.077–2014.

Метрологические и технические характеристики

Основные метрологические и технические характеристики вольтметров представлены в таблицах 2-8.

Таблица 2 – Измерение напряжения постоянного тока

Верхняя граница диапазона измерений	Пределы допускаемой основной абсолютной погрешности измерений при температуре от 18 до 28 °C	Пределы допускаемой дополнительной температурной погрешности измерений в диапазонах от 0 до 18 °C и от 28 до 55 °C
1	2	3
0,4 B	$\pm (0.00015 \cdot X + 0.00002 \cdot P)$	$\pm (0,00001 \cdot X + 0,000005 \cdot P)$
4 B	$\pm (0.00015 \cdot X + 0.00002 \cdot P)$	$\pm (0,000008 \cdot X + 0,000003 \cdot P)$
40 B	$\pm (0.00020 \cdot X + 0.00002 \cdot P)$	$\pm (0.00001 \cdot X + 0.000005 \cdot P)$
400 B	$\pm (0.00020 \cdot X + 0.00002 \cdot P)$	$\pm (0.000015 \cdot X + 0.000005 \cdot P)$
1000 B	$\pm (0.00025 \cdot X + 0.00002 \cdot P)$	$\pm (0,000015 \cdot X + 0,000005 \cdot P)$

Примечания

- 1 Х измеренное значение напряжения постоянного тока;
- 2 Р верхняя граница диапазона измерений.

Таблица 3 – Измерение напряжения переменного тока (СКЗ)

	1 1	1 , ,	
		Пределы допускаемой	Пределы допускаемой
Верхняя		основной	дополнительной
граница	Частота	абсолютной погрешности	температурной
диапазона	9ac101a	измерений при	погрешности измерений в
измерений		температуре	диапазонах от 0 до 18 °C и
		от 18 до 28 °C	от 28 до 55 °C
1	2	3	4
0,4 B;	от 10 до 20 Гц	$\pm (0.03 \cdot X + 0.0005 \cdot P)$	
4 B;	от 20 до 45 Гц	$\pm (0.015 \cdot X + 0.0005 \cdot P)$	$\pm (0,0001 \cdot X + 0,0001 \cdot P)$
40 B;	от 45 Гц до 20 кГц	$\pm (0.003 \cdot X + 0.0005 \cdot P)$	
400 B;	от 20 до 50 кГц	$\pm (0.01 \cdot X + 0.0005 \cdot P)$	$\pm (0,0002 \cdot X + 0,0001 \cdot P)$
750 B	от 50 до 100 кГц	$\pm (0.03 \cdot X + 0.0005 \cdot P)$	$\pm (0.0005 \cdot X + 0.0001 \cdot P)$

Примечания

- 1 Х измеренное значение напряжения переменного тока (СКЗ);
- 2 Р верхняя граница диапазона измерений;
- 3 Нижняя граница диапазона измерений составляет 10 % от верхней границы.

Таблица 4 – Измерение силы постоянного тока

		Пределы допускаемой	
Верхняя	Пределы допускаемой	дополнительной	
граница	основной абсолютной	температурной	Разрешение, нА
диапазона	погрешности измерений при	погрешности измерений в	т азрешение, нд
измерений	температуре от 18 до 28 °C	диапазонах от 0 до 18 °C и от	
		28 до 55 °C	
1	2	3	4
0,02 A;	$\pm (0.0005 \cdot X + 0.0001 \cdot P)$	$\pm (0.00008 \cdot X + 0.00001 \cdot P)$	0,1 – 1
0,2 A	± (0,0003 · A + 0,0001 · F)	± (0,00008 · X + 0,00001 · F)	0,1-1
2 A	$\pm (0.0025 \cdot X + 0.0007 \cdot P)$	$\pm (0,00012 \cdot X + 0,000015 \cdot P)$	0,1-1
10 A	$\pm (0.0025 \cdot X + 0.0007 \cdot P)$	$\pm (0,00001 \cdot X + 0,00001 \cdot P)$	0,1-1

Примечания

- 1 X измеренное значение силы постоянного тока;
- 2 Р верхняя граница диапазона измерений.

Таблица 5 – Измерение силы переменного тока (СКЗ)

Верхняя граница диапазона измерений	Частота	Пределы допускаемой основной абсолютной погрешности измерений при температуре от 18 до 28 °C	Пределы допускаемой дополнительной температурной погрешности измерений в диапазонах от 0 до 18 °C и от 28 до 55 °C	Разрешение, нА
1	2	3	4	5
0,02 A;	от 20 до 40 Гц	$\pm (0.015 \cdot X + 0.0005 \cdot P)$		
0,2 A;	от 40 Гц до 1 кГц	$\pm (0.005 \cdot X + 0.0005 \cdot P)$	$\pm (0,0001 \cdot X +$	0,1-1
2 A;	от 1 до 5 кГц	$\pm (0.015 \cdot X + 0.0005 \cdot P)$	$+ 0,0001 \cdot P)$	0,1-1
10 A	от 5 до 10 кГц	$\pm (0.025 \cdot X + 0.0005 \cdot P)$		

Примечания

- 1 Х измеренное значение силы переменного тока (СКЗ);
- 2 Р верхняя граница диапазона измерений;
- 3 Нижняя граница диапазона измерений составляет 10 % от верхней границы.

Таблица 6 – Измерение электрического сопротивления постоянному току

Верхняя граница диапазона измерений	Пределы допускаемой основной абсолютной погрешности измерений при температуре от 18 до 28 °C	Пределы допускаемой дополнительной температурной погрешности измерений в диапазонах от 0 до 18 °C и от 28 до 55 °C
1	2	3
400 Ом	$\pm (0.0005 \cdot X + 0.00005 \cdot P)$	
4 кОм	$\pm (0.00015 \cdot X + 0.00002 \cdot P)$	
40 кОм	$\pm (0.0003 \cdot X + 0.00003 \cdot P)$	$\pm (0.00002 \cdot X + 0.000005 \cdot P)$
400 кОм	$\pm (0.0003 \cdot X + 0.00003 \cdot P)$	
4 МОм	$\pm (0.006 \cdot X + 0.00005 \cdot P)$	
40 МОм	$\pm (0.0025 \cdot X + 0.00003 \cdot P)$	$\pm (0,00008 \cdot X + 0,000005 \cdot P)$
250 МОм	$\pm (0.02 \cdot X + 0.0001 \cdot P)$	$\pm (0.002 \cdot X + 0.000005 \cdot P)$

Примечания

- 1 Х измеренное значение электрического сопротивления постоянному току;
- 2 Р верхняя граница диапазона измерений.

Таблица 7 – Измерение электрической емкости

Верхняя	Пределы допускаемой основной	Пределы допускаемой дополнительной
граница	абсолютной погрешности	температурной погрешности измерений
диапазона	измерений при температуре	в диапазонах от 0 до 18 °C
измерений	от 18 до 28 °C	и от 28 до 55 °C
1	2	3
5 нФ	$\pm (0.002 \cdot X + 0.0025 \cdot P)$	
50 нФ	$\pm (0.001 \cdot X + 0.002 \cdot P)$	$\pm (0.0002 \cdot X + 0.00002 \cdot P)$
500 нФ	$\pm (0.001 \cdot X + 0.0005 \cdot P)$	
5 мкФ	$\pm (0.001 \cdot X + 0.0005 \cdot P)$	
50 мкФ	$\pm (0.001 \cdot X + 0.0005 \cdot P)$	$\pm (0.0002 \cdot X + 0.00002 \cdot P)$
500 мкФ	$\pm (0.002 \cdot X + 0.001 \cdot P)$	

Примечания

- 1 Х измеренное значение электрической емкости;
- 2 Р верхняя граница диапазона измерений.

Таблица 8 – Основные технические характеристики

Характеристика	Значение
1	2
Время готовности к работе, мин не более	90
Напряжение и частота питающей сети	115/230 В, 50/60 Гц
Потребляемая мощность, В·А	12
Условия эксплуатации:	
– температура окружающего воздуха, °С	от 0 до 55
– относительная влажность, %, не более	от 5 до 80

Продолжение таблицы 8

Габаритные размеры (высота 'ширина 'глубина), мм, не более	222 ´ 88 ´ 280
Масса, кг, не более	2,7

Знак утверждения типа

наносится на лицевую панель вольтметров в виде наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплект поставки вольтметров представлен в таблице 9.

Таблица 9 – Комплектность поставки вольтметров

Наименование	Количество, шт.	
1	2	
Вольтметр	1	
Измерительные кабели	1	
Кабель питания	1	
Руководство по эксплуатации	1	
Методика поверки	1	
Диск CD-ROM с руководством по эксплуатации и		
программным обеспечением для управления	1	
вольтметром		

Поверка

осуществляется по документу РТ-МП-2454-551-2015 «ГСИ. Вольтметры универсальные НМС8012, НМС8012-G. Методика поверки», утвержденному ФБУ «Ростест-Москва» 17.08.2015 г.

Основные средства поверки:

- калибратор многофункциональный Fluke 5522A (Госреестр № 51160-12).

Сведения о методиках (методах) измерений

Методика измерений с помощью вольтметров указаны в документе «Вольтметры универсальные НМС8012, НМС8012-G. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к вольтметрам универсальным HMC8012, HMC8012-G

- 1 ГОСТ 22261 94 Средства измерений электрических и магнитных величин. Общие технические условия.
 - 2 Техническая документация фирмы "Rohde & Schwarz GmbH & Co. KG", Германия.

Изготовитель

Фирма "Rohde & Schwarz GmbH & Co. KG", Германия Адрес: Muehldorfstrasse 15, 81671 Munich, Germany Тел.: +49 89 41 29 0; Факс: +49 89 4 29 12 164 http://customersupport@rohde-schwarz.com

«____» _____2015 г.

Заявитель

Представительство фирмы "РОДЕ И ШВАРЦ ГМБХ И КО.КГ» (Германия) г. Москва ИНН 9909002668

Адрес: Российская Федерация, 115093 г. Москва, Павловская, д. 7, стр. 1;

Тел.: +7(495)981-3560; Факс: +7(495)981-3565.

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест–Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Тел: (495) 544-00-00

Аттестат аккредитации ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа RA RU.310639 от $16.04.2015~\mathrm{r}$.

М.п.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии
С.С. Голубев