ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Мордовская энергосбытовая компания»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Мордовская энергосбытовая компания» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее – ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее – ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень – измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных СИКОН С70 (далее – УСПД), каналообразующую аппаратуру.

3-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее – ПО) «Пирамида 2000», а так же устройство синхронизации времени (далее – УСВ) УСВ-1.

Измерительные каналы 1-4 (далее – ИК) состоят из трех уровней АИИС КУЭ (ИИК, ИВКЭ, ИВК), каналы 5, 6 состояти из двух уровней АИИС КУЭ (ИИК, ИВК).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем – третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу TCP/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИВКЭ и ИВК, уровень ИИК синхронизируется от СОЕВ сетевой организации. АИИС КУЭ оснащена устройством синхронизации времени, на основе приемника сигналов точного времени от спутников глобальной системы позиционирования (GPS). Погрешность часов УСВ не более ± 1 с. Устройство синхронизации времени обеспечивает автоматическую коррекцию часов сервера БД и УСПД. Коррекция часов УСПД проводится при расхождении часов УСПД и времени приемника более чем на ± 1 с, пределы допускаемой абсолютной погрешности синхронизации часов УСПД и времени приемника не более ± 1 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 2 с. Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с.

Журналы событий счетчика электроэнергии и УСПД отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2000» версии не ниже 3.0, в состав которого входят модули, указанные в таблице 1. ПО «Пирамида 2000» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами данных, доступа. Средством защиты данных при передаче является кодирование средствами обеспечиваемое программными ПО «Пирамида 2000».

Таблица 1 – Метрологические значимые модули ПО

Идентифика-	тегрологи неские эна имые модули 110									
ционные дан-	Значение									
ные										
Идентифика- ционное на- именование ПО	Модуль вычисления значений энергии и мощности по группам точек учета CalcClients.dll	Модуль расчета небаланса энер- гии/мощн ости CalcLeak- age.dll	Модуль вычисле- ния зна- чений энергии потерь в линиях и транс- формато- рах Cal- cLosses.dl	Общий модуль, содержащий функции, используемые при вычислениях различных значений и проверке точности вычислений Меtrology.dll	Модуль обработки значений физиче- ских вели- чин, пере- даваемых в бинар- ном про- токоле Parse- Bin.dll	Модуль обработки значений физических величин, передаваемых по протоколам семейства МЭК Раг-seIEC.dll	Модуль обработки значений физиче- ских вели- чин, пере- даваемых по прото- колу Mod- bus ParseMod- bus.dll	Модуль обработки значений физических величин, передаваемых по протоколу Пирамида ParsePiramida.dll	Модуль формирования расчетных схем и контроля целостности данных нормативносправочной информации SynchroNSI.dll	Модуль расчета величины рассин-хронизации и значений коррекции времени VerifyTime.dll
Номер версии (идентифика- ционный но- мер) ПО	3									
Цифровой идентификатор ПО	e55712d0b1 b219065d63 da949114da e4	b1959ff70 be1eb17c 83f7b0f6d 4a132f	d79874d1 0fc2b156a 0fdc27e1c a480ac	52e28d7b60 8799bb3ccea 41b548d2c8 3	6f557f885b 737261328 cd77805bd 1ba7	48e73a9283 d1e6649452 1f63d00b0d 9f	c391d6427 1acf4055bb 2a4d3fe1f8f 48	ecf532935ca 1a3fd32150 49af1fd979f	530d9b0126f 7cdc23ecd81 4c4eb7ca09	1ea5429b2 61fb0e288 4f5b356a1 d1e75
Алгоритм вычисления цифрового идентификатора ПО					I	MD5				

Системы информационно-измерительные контроля и учета энергопотребления «Пирамида», включающее в себя ПО «Пирамида 2000», внесены в Госреестр №21906-11.

Предел допускаемой дополнительной абсолютной погрешности по электроэнергии, получаемой за счет математической обработки измерительной информации, поступающей от счетчиков, составляет 1 единицу младшего разряда измеренного значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии, а также для разных временных (тарифных) зон не зависят от способов передачи измерительной информации и определяются классами точности применяемых электросчетчиков и измерительных трансформаторов.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ΠO .

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

мер		Измерительные компоненты					Метрологические характеристики ИК	
Порядковый номер	Наименование объекта и номер ИК	TT	ТТ ТН Счётчик УСПД		Вид электроэнергии	Основ- ная по- греш- ность, %	Погрешность в рабочих условиях, %	
1	2	3	4	5	6	7	8	9
1	ПС 110/6 кВ Пивовар ЗРУ-6кВ 1с.ш. яч 103	ТОЛ-СЭЩ-10 Кл. т. 0,5S 1500/5 Зав. № 13871; Зав. № 16197	НАМИ-10-95УХЛ2 Кл. т. 0,5 6000/100 Зав. № 782	A1802RALX- P4GB-DW-4 Кл. т. 0,2S/0,5 Зав. № 01294064	СИКОН С70 Зав. № 1967	активная	±1,1 ±2,7	±3,0 ±4,8
2	ПС 110/6 кВ Пивовар ЗРУ-6кВ 2с.ш. яч 203	ТОЛ-СЭЩ-10 Кл. т. 0,5S 1500/5 Зав. № 16264; Зав. № 15601	НАМИ-10-95УХЛ2 Кл. т. 0,5 6000/100 Зав. № 936	A1802RALX- P4GB-DW-4 Кл. т. 0,2S/0,5 Зав. № 01294065	СИКОН С70 Зав. № 1967	активная	±1,1 ±2,7	±3,0 ±4,8
3	ПС 110/6 кВ Пивовар ЗРУ-6кВ 3с.ш. яч 304	ТОЛ-СЭЩ-10 Кл. т. 0,5 1500/5 Зав. № 15622; Зав. № 15625	НАМИ-10-95УХЛ2 Кл. т. 0,5 6000/100 Зав. № 948	A1802RALX- P4GB-DW-4 Кл. т. 0,2S/0,5 Зав. № 01294062	СИКОН С70 Зав. № 1967	активная	±1,1 ±2,7	±3,0 ±4,8

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
4	ПС 110/6 кВ Пивовар ЗРУ-6кВ 4с.ш. яч 404	ТОЛ-СЭЩ-10 Кл. т. 0,5 1500/5 Зав. № 16170; Зав. № 16206	НАМИ-10-95УХЛ2 Кл. т. 0,5 6000/100 Зав. № 929	A1802RALX- P4GB-DW-4 Кл. т. 0,2S/0,5 Зав. № 01294063	СИКОН С70 Зав. № 1967	активная	±1,1 ±2,7	±3,0 ±4,8
5	ПС 110/6 кВ «Восточная» ЗРУ-6кВ, 1с.ш., яч. №1Б	ТОЛ-СЭЩ-10 Кл. т. 0,2S 100/5 Зав. № 05848-13; Зав. № 05843-13; Зав. № 05854-13	НАМИ-10-95УХЛ2 Кл. т. 0,5 6000/100 Зав. № 228	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0812122723	-	активная	±0,8 ±1,8	±1,6 ±2,8
6	ПС 110/6 кВ «Восточная» ЗРУ-6кВ, 4с.ш., яч. №50	ТОЛ-СЭЩ-10 Кл. т. 0,2S 100/5 Зав. № 05853-13; Зав. № 05847-13; Зав. № 05846-13	НАМИТ-10-2 Кл. т. 0,5 6000/100 Зав. № 1196	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0812121711	-	активная реактивная	±0,8 ±1,8	±1,6 ±2,8

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0.98-1.02) Uном; ток (1.0-1.2) Іном, частота (50 ± 0.15) Γ ц; \cos ј = 0.9 инд.;
- температура окружающей среды: ТТ и ТН от плюс 15 до плюс 35 °C; счетчиков от плюс 21 до плюс 25 °C; УСПД от плюс 10 до плюс 30 °C; ИВК от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 ± 4) кПа;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
 - 4. Рабочие условия эксплуатации:
 - а) для ТТ и ТН:
- параметры сети: диапазон первичного напряжения (0.9-1.1) UH₁; диапазон силы первичного тока (0.02-1.2) IH₁; коэффициент мощности cosj (sinj) 0.5-1.0 (0.87-0.5); частота (50 ± 0.4) Γ Ц;
 - температура окружающего воздуха от минус 40 до плюс 70 °C.
 - б) для счетчиков электроэнергии:
- параметры сети: диапазон вторичного напряжения (0.9-1.1) UH₂; диапазон силы вторичного тока (0.01-1.2) IH₂; коэффициент мощности cosj (sinj) 0.5-1.0 (0.87-0.5); частота (50 ± 0.4) Γ ц;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100 \pm 4) кПа;
 - температура окружающего воздуха:
 - для счётчиков электроэнергии A1802RALX-P4GB-DW-4 от минус 40 до плюс 65 °C;
 - для счётчиков электроэнергии СЭТ-4ТМ.03М от минус 40 до плюс 60 °C;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
 - в) для аппаратуры передачи и обработки данных:
 - параметры питающей сети: напряжение (220 ± 10) В; частота (50 ± 1) Гц;
 - температура окружающего воздуха от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70 \pm 5) %;
 - атмосферное давление (100 \pm 4) кПа.
- 5. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК № 1 6 от 0 до плюс 40 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа. Замена оформляется актом в установленном на ПАО «Мордовская энергосбытовая компания» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик A1802RALX-P4GB-DW-4 среднее время наработки на отказ не менее T=120000 ч, среднее время восстановления работоспособности tв =2 ч;
- электросчётчик СЭТ-4ТМ.03М среднее время наработки на отказ не менее T=165000 ч, среднее время восстановления работоспособности t = 2 ч;
- УСПД СИКОН С70 среднее время наработки на отказ не менее $T=75000~\rm y$, среднее время восстановления работоспособности $t = 2~\rm y$;

- сервер — среднее время наработки на отказ не менее $T=70000\,$ ч, среднее время восстановления работоспособности $t = 1\,$ ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; сохранение информации при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии, потребленной за месяц, по каждому каналу не менее 35 суток; сохранение информации при отключении питания не менее 10 лет;
- Сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ПАО «Мордовская энергосбытовая компания» типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

Наименование	Тип	№ Госреестра	Количество, шт.	
Трансформатор тока	ТОЛ-СЭЩ-10	32139-06	8	
Трансформатор тока	ТОЛ-СЭЩ-10	51623-12	6	
Трансформатор напряжения	НАМИ-10-95УХЛ2	20186-05	4	
Трансформатор напряжения	НАМИТ-10	16687-07	1	
Счётчик электрической энер-	A1802RALX-	31857-11	Л	
гии многофункциональный	P4GB-DW-4	31037-11	4	
Счётчик электрической энер-	СЭТ-4ТМ.03М	36697-12	2	
гии многофункциональный	C51-41WL03WI	30077-12		
Устройство сбора и передачи	СИКОН С70	28822-05	1	
данных	CHROIT C70	20022-03	1	
Программное обеспечение	«Пирамида 2000»	-	1	
Методика поверки	-	-	1	
Паспорт-Формуляр	-	-	1	
Руководство по эксплуатации	-	-	1	

Поверка

осуществляется по документу МП 62512-15 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Мордовская энергосбытовая компания». Измерительные каналы. Методика поверки», утвержденному Φ ГУП «ВНИИМС» в августе 2015 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ $8.217-2003 \ \mbox{«ГСИ.}$ Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков A1802RALX-P4GB-DW-4 по документу «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки ДЯИМ.411152.018 МП», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в 2011 г.;
- счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая $2012~\mathrm{r.}$;
- УСПД СИКОН С70 по документу «ГСИ. Комплекс программно-технический измерительный ЭКОМ-3000. Методика поверки. ПБКМ.421459 МП», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в мае 2009 г.;

- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.

Знак поверки наносится на свидетельство о поверке, оформленное в соответствии с Приказом Минпромторга России № 1815 от 2 июля 2015 г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием АИИС КУЭ ПАО «Мордовская энергосбытовая компания», аттестованной Φ ГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Мордовская энергосбытовая компания»

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- 3 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью «Энергосистемы» (ООО «Энергосистемы») ИНН 7721777526

Юридический адрес: 600035, Россия, г. Владимир, ул. Куйбышева, 16, оф. 411 Почтовый адрес: 600035, Россия, г. Владимир, ул. Куйбышева, 16, оф. 405

Тел./факс: 8(4922)60-23-22 E-mail: post@ensys.su

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

α	\sim	-	`~	-6
			$\alpha_{\Pi N}$	убев
\sim .	\sim .		OJI '	VOCD