ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакциях, утвержденных приказами Росстандарта № 124 от 30.01.2020 г., № 979 от 25.05.2020 г.)

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Дальреострой»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Дальреострой» (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной энергии, а также для автоматизированного сбора, обработки, хранения, отображения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень информационно-измерительный комплекс (ИИК), включающий в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН) и счетчики активной и реактивной электроэнергии, вторичные измерительные цепи.
- 2-й уровень измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД), устройство синхронизации времени (УССВ) и коммутационное оборудование.
- 3-й уровень информационно-вычислительный комплекс (ИВК) АИИС КУЭ, включающий в себя сервер, обеспечивающий функции сбора и хранения результатов измерений; устройство синхронизации времени (УССВ); технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации; технические средства приема-передачи данных.

Измерительные каналы (ИК) состоят из трех уровней АИИС КУЭ.

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Каждые 30 минут УСПД производит опрос всех подключенных к нему цифровых счетчиков ИК. Полученная информация записывается в энергонезависимую память УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных по беспроводным линиям на верхний уровень системы — сервер базы данных, а также отображение информации по подключенным к УСПД устройствам.

Сервер базы данных (сервер БД), с периодичностью один раз в 30 минут производит опрос УСПД уровня ИВКЭ. Полученная информация записывается в базу данных сервера БД.

На верхнем — третьем уровне системы выполняется дальнейшая обработка, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в организации—участники оптового рынка электроэнергии осуществляется в соответствии с согласованными сторонами регламентами.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), созданной на основе УССВ-2. Синхронизация времени сервера происходит при каждом сеансе связи с УССВ-2, коррекция производится при расхождении времени более чем на ±1 с.

Синхронизация времени УСПД от УССВ-2 происходит с периодичностью 1 раз в 60 минут, коррекция производится при расхождении времени более чем на ± 2 с (программируемый параметр). Время счетчиков синхронизируется от УСПД с периодичностью 1 раз в 30 минут, коррекция времени счетчиков производится при расхождении времени счетчиков и УСПД более чем на ± 2 с (программируемый параметр).

Журналы событий счетчиков электроэнергии и УСПД отражают: время (дата, часы, минуты, секунды) до и после коррекции.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР».

ПО предназначено для автоматического сбора, обработки и хранения данных, отображения полученной информации в удобном для анализа и отчётности виде, взаимодействия со смежными системами.

Идентификационные данные ПО «АльфаЦЕНТР», указаны в таблице 1.

Таблица 1 – Идентификационные данные ПО «АльфаЦЕНТР»

Two may T Tag T T T T T T T T T T T T T T T T T						
Идентификационные данные (признаки)	Значение					
Идентификационное наименование ПО	АльфаЦЕНТР					
Номер версии (идентификационный номер) ПО	не ниже 15.07.04					
Цифровой идентификатор ПО	3e736b7f380863f44cc8e6f7bd211c54					
Алгоритм вычисления цифрового идентификатора	MD5					

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений – «средний» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики Метрологические и технические характеристики ИК АИИС КУЭ приведены в таблицах 2-3.

Таблица 2 - Состав ИК АИИС КУЭ

		Состав 1-го уровня						Метрологические характеристики		
Номер ИК	Наименование объекта учета	Н	Вид СИ, класс точности, коэффициент трансформации, регистрационный омер в Федеральном информационном фонде (рег. №)	Обозначение, тип	K _{TT} ·K _{TH} ·K _C	УСПД/УССВ	Сервер	Вид энергии	Основная Погрешность ИК, '	Погрешность ИК в рабочих условиях эксплуатации, ±, %
1	2		3	4	5	6		7	8	9
	ТП-777 6/0,4 кВ, РУ-6 кВ, 1 с.ш. 6 кВ, яч. 2	Счетчик ТН ТТ	KT = 0,5 KTT = 300/5 № 32139-06 KT = 0,5 KTH= $6000/\sqrt{3}/100/\sqrt{3}$ № 55024-13 KT = 0,5S/1,0 KCH = 1 № 31857-11	C ЗНОЛ-СЭЩ-6 A1805RAL-P4GB- DW-4	3600	RTU-325L рег. № 37288-08	УССВ-2	Активная Реактивная	1,2 2,5	5,6 4,2
	ПС «СВ» 35/6 кВ, РУ-6 кВ, 1 с.ш. 6 кВ, яч. 11	$\mathbf{L}\mathbf{L}$	K _T = 0,5S K _{TT} = 150/5 № 32139-06	A ТОЛ-СЭЩ-10 B - C ТОЛ-СЭЩ-10		УССВ-2 рег. № 54074-13	per. № 54074-13			
2		TH	Kt = 0,5 Kth= 6000/100 № 60002-15	А В НАМИ-10-95 С	1800			Активная	1,2	5,2
		Счетчик	Кт = 0,5S/1,0 Ксч = 1 № 31857-11	A1805RAL-P4GB- DW-4				Реактивная	2,5	4,1

Продолжение таблицы 2

Пределы допускаемой погрешности СОЕВ, с ±5

Примечания

- 1 Характеристики погрешности ИК даны для измерений электроэнергии (получасовая).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3 Погрешность в рабочих условиях указана для тока 2(5)% $I_{\text{ном}}$ $\cos j = 0.5_{\text{инд}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от 0 до плюс 30° С.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 3 метрологических характеристик.
 - 5 Допускается замена УСПД, УССВ на аналогичные утвержденных типов.
- 6 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики ИК	Значение
Нормальные условия:	Эпачение
параметры сети:	
- напряжение, % от U _{ном}	от 99 до 101
- ток, % от I _{ном}	от 100 до 120
	0,87
- коэффициент мощности, соѕј	от +21 до +25
- температура окружающей среды, °С	01 +21 до +23
Условия эксплуатации:	
параметры сети:	от 00 то 110
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 2(5) до 120
- коэффициент мощности, cosj	от 0,5 $_{\rm инд}$ до 0,8 $_{\rm емк}$
диапазон рабочих температур окружающего воздуха, °C:	om 45 == +40
- для TT и TH	от -45 до +40
- для счетчиков	от -40 до +65
- для УСПД	от -10 до +55
- для УССВ	от -10 до +55
магнитная индукция внешнего происхождения, мТл, не более	0,5
Надежность применяемых в АИИС КУЭ компонентов:	
электросчетчики Альфа А1800:	
- среднее время наработки на отказ, ч, не менее	120000
- среднее время восстановления работоспособности, ч, не более УСПД RTU-325L:	72
- среднее время наработки на отказ, ч, не менее	100000
- среднее время восстановления работоспособности, ч, не более	24
ИВК:	
- коэффициент готовности, не менее	0,99
- среднее время восстановления работоспособности, ч, не более	1
Глубина хранения информации	
электросчетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	45
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электроэнергии по каждому каналу и электроэнергии, потребленной	
за месяц, сут, не менее	45
ИВК:	
- результаты измерений, состояние объектов и средств	
измерений, лет, не менее	3,5
	, , , , , , , , , , , , , , , , , , ,

Надежность системных решений:

- защита от кратковременных сбоев питания сервера, УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика электрической энергии;
 - УСПД;

Возможность коррекции времени в:

- счетчиках электрической энергии (функция автоматизирована);
- УСПД (функция автоматизирована);
- сервере ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ. Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество
Трансформаторы тока	ТОЛ-СЭЩ-10	4 шт.
Трансформаторы напряжения	ЗНОЛ-СЭЩ-6	3 шт.
Трансформаторы напряжения	НАМИ-10-95	1 шт.
Счетчики электрической энергии трехфазные многофункциональные	Альфа А1800	2 шт.
Устройство сбора и передачи данных	RTU-325L	1 шт.
Устройство синхронизации системного времени	УССВ-2	2 шт.
Методика поверки	МП 62429-15 с изменением № 1	1 экз.
Паспорт-формуляр	ТДВ.411711.048.ФО	1 экз.

Поверка

осуществляется по документу МП 62429-15 с изменением № 1 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Дальреострой». Методика поверки», утвержденному ФГУП «ВНИИМС» 14.11.2019 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 ГСИ. Трансформаторы тока. Методика поверки;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 ГСИ. Трансформаторы напряжения. Методика поверки и/или МИ 2845-2003 ГСИ. Измерительные трансформаторы напряжения $6/\sqrt{3}...$ 35 кВ. Методика поверки на месте эксплуатации;
- счетчиков Альфа A1800 по документу «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки ДЯИМ.411152.018 МП», утвержденному Φ ГУП «ВНИИМС» в 2011 г.;
- для УСПД RTU-325L по документу ДЯИМ.466.453.005МП «Устройства сбора и передачи данных RTU-325 и RTU-325L. Методика поверки», утвержденному Φ ГУП «ВНИИМС» в 2008 г.;
- для УССВ-2 по документу МП-РТ-1906-2013 (ДИЯМ.468213.001МП) «Устройства синхронизации системного времени УССВ-2. Методика поверки», утвержденному ФБУ «Ростест-Москва» 17.05.2013 г;
- средства измерений по МИ 3195-2018 ГСИ. Методика измерений мощности нагрузки измерительных трансформаторов напряжения в условиях эксплуатации;
- средства измерений по МИ 3196-2018 ГСИ. Методика измерений мощности нагрузки измерительных трансформаторов тока в условиях эксплуатации;
- средства измерений по МИ 3598-2018 ГСИ. Методика измерений потерь напряжения в линиях соединения счетчика с трансформатором напряжения в условиях эксплуатации;
 - радиочасы МИР РЧ-01, рег. № 27008-04;
 - термогигрометр CENTER (мод.314), рег. № 22129-09.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Дальреострой», аттестованном ООО «РусЭнергоПром», аттестат аккредитации № RA.RU.312149 от 04.05.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Дальреострой»

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

Изготовитель

Общество с ограниченной ответственностью «Телекор ДВ» (ООО «Телекор ДВ») ИНН 2722065434

Адрес: 680026. г. Хабаровск, ул. Тихоокеанская 60а

Заявитель

Общество с ограниченной ответственностью «ЭнергоМетрика» (ООО «ЭнергоМетрика»)

ИНН 7456038356

Адрес: 455000, Челябинская обл., г. Магнитогорск, ул. Калинина, дом 25

Телефон: +7 (3519) 59-01-60 E-mail: enmetr@mail.ru

Испытательные центры

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы»

Адрес: 119631, г. Москва, ул. Озерная, д.46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 437-56-66 Web-сайт: <u>www.vniims.ru</u> E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

В части вносимых изменений:

Общество с ограниченной ответственностью «Энергокомплекс»

(ООО «Энергокомплекс»)

Адрес: 455017, Челябинская обл., г. Магнитогорск, ул. Мичурина, д. 26, 3

Телефон: +7 (351) 958-02-68 E-mail: encomplex@yandex.ru

Аттестат аккредитации ООО «Энергокомплекс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312235 от 31.08.2017 г.

(Редакции приказов Росстандарта № 124 от 30.01.2020 г., № 979 от 25.05.2020 г.)

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2020 г.