## ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакциях, утвержденных приказами Росстандарта № 1628 от 01.08.2018 г., № 913 от 22.04.2019 г.)

# Трансформаторы напряжения емкостные НДКМ

## Назначение средства измерений

Трансформаторы напряжения емкостные НДКМ (далее по тексту – трансформаторы) предназначены для передачи сигнала измерительной информации средствам измерений, устройствам защиты, автоматики, сигнализации и управления в электрических сетях переменного тока промышленной частоты классов напряжения 110, 150, 220, 330 и 500 кВ с глухо или эффективно заземленной нейтралью.

### Описание средства измерений

Трансформаторы представляют собой однофазные электромагнитные масштабные измерительные преобразователи.

Принцип действия трансформатора напряжения основан на масштабном преобразовании высокого напряжения в заданное число раз с помощью емкостного делителя напряжения и электромагнитного трансформатора.

Конструкция трансформатора является герметичной и состоит из активной части, размещенной в герметичном баке (далее – электромагнитное устройство (ЭМУ)), и емкостного делителя напряжения.

Делитель состоит из набора конденсаторов с бумажно-пропиленовой изоляцией прокладок, помещенных в залитый синтетическим маслом изолятор из фарфора или композитного материала, смонтирован в виде колонны из одной или нескольких секций.

ЭМУ подключается к делителю и состоит из последовательно включенных компенсирующего реактора с малыми потерями и электромагнитного трансформатора, помещенных в залитый трансформаторным маслом бак. Первичная обмотка электромагнитного трансформатора имеет регулировочные катушки и отпайки для подбора коэффициента трансформации. Корпус электромагнитного устройства служит основанием для монтажа колонны емкостного делителя.

На баке ЭМУ расположены: коробка низковольтных выводов, крюки для подъема, пробка для взятия проб и слива масла, два заземляющих зажима и табличка трансформатора. Высоковольтный ввод расположен на верхнем фланце делителя.

В коробке низковольтных выводов установлены сальники для ввода кабелей вторичной коммутации и пломбируемая от несанкционированного доступа коробка с выводами обмотки для АИИСКУЭ.

Трансформаторы имеют до четырех вторичных обмоток - основных (для АИИС КУЭ, измерения и (или) защиты) и (или) дополнительных (для цепей релейной защиты). Возможно исполнение с вторичной обмоткой для отбора мощности.

Трансформаторы выпускаются в пяти модификациях, отличающихся номинальным напряжением первичной обмотки. Возможны варианты с различными конструктивными особенностями, не влияющими на метрологические характеристики (удельная длина пути утечки, цвет глазури внешней изоляции, конфигурации экрана, тип материала первичного вывода и т.д.). Общий вид трансформаторов представлен на рисунках 1-4.

На корпусе трансформаторов имеется табличка технических данных.

Трансформаторы относятся к однофункциональным изделиям.

Рабочее положение трансформаторов в пространстве – вертикальное.



Рисунок 1 – Общий вид трансформаторов напряжения НДКМ-110, НДКМ-150



Рисунок 2 – Общий вид трансформаторов напряжения НДКМ-220



Рисунок 3 – Общий вид трансформаторов напряжения НДКМ-330



Рисунок 4 — Общий вид трансформаторов напряжения НДКМ-500

# Метрологические и технические характеристики

Таблица 1 - Метрологические и технические характеристики трансформаторов напряжения емкостных НДКМ

| Наименование характеристики                  | Значение характеристики для модификаций |                    |           |             |                    |  |
|----------------------------------------------|-----------------------------------------|--------------------|-----------|-------------|--------------------|--|
|                                              | НДКМ-                                   | НДКМ-              | НДКМ-     | НДКМ-       | НДКМ-              |  |
|                                              | 110                                     | 150                | 220       | 330         | 500                |  |
| Класс напряжения, кВ                         | 110                                     | 150                | 220       | 330         | 500                |  |
| Наибольшее рабочее напряжение,               | 126/√3                                  | 172/√3             | 252/√3    | 363/√3      | 525/√3             |  |
| кВ                                           | 120/ \\3                                | 172/3              | 232/ \\ 3 | 303/ \\3    | 323/ 13            |  |
| Номинальное напряжение первичной обмотки, кВ | 110/√3                                  | 150/√3             | 220/√3    | 330/√3      | 500/√3             |  |
| Номинальное напряжение основных              |                                         | 100//2             |           |             |                    |  |
| вторичных обмоток, В                         |                                         | $100/\sqrt{3}$     |           |             |                    |  |
| Номинальное напряжение                       |                                         |                    |           |             |                    |  |
| дополнительной вторичной                     | 100                                     |                    |           |             |                    |  |
| обмотки, В                                   |                                         |                    |           |             |                    |  |
| Номинальные мощности основных                |                                         |                    |           |             |                    |  |
| вторичных обмоток, В.А, в классе             |                                         |                    | 10 200    | <b>、</b> 1) |                    |  |
| точности: 0,2                                | от 10 до 300 1)                         |                    |           |             |                    |  |
| 0,5                                          | от 10 до 500                            |                    |           |             |                    |  |
| 1,0<br>3,0 (3P)                              | от 10 до 800<br>от 10 до 1200           |                    |           |             |                    |  |
| Номинальная мощность                         | 01 10 до 1200                           |                    |           |             |                    |  |
| дополнительной вторичной                     |                                         |                    |           |             |                    |  |
| обмотки, В.А, в классе точности:             |                                         |                    |           |             |                    |  |
| 3,0 (3P)                                     | от 10 до 1200 <sup>2)</sup>             |                    |           |             |                    |  |
| Предельная мощность                          | 2000                                    |                    |           |             |                    |  |
| трансформатора, В·А                          |                                         |                    |           |             |                    |  |
| Номинальная емкость, пФ                      | 18000 <sup>3)</sup>                     | 7000 <sup>3)</sup> | 9000 3)   | 7000 3)     | 4500 <sup>3)</sup> |  |
| Номинальная частота напряжения               |                                         | 50                 |           |             |                    |  |
| сети, Гц                                     |                                         | 30                 |           |             |                    |  |
| Схема и группа соединения обмоток            | 1/1/1/1-0-0-0                           |                    |           |             |                    |  |
| Габаритные размеры, мм, не более             | 2466                                    | 2000               | 4500      | 6000        | 7000               |  |
| (высота×длина×ширина или                     | 2400×                                   | 2800×              | 4500×     | 6000×       | 7000×              |  |
| высотахдиаметр)                              | 682×632                                 | 682×632            | 682×632   | 1200        | 1200               |  |
| Масса, кг, не более                          | 800                                     | 850                | 900       | 1200        | 1500               |  |
| Климатическое исполнение и                   |                                         |                    |           |             |                    |  |
| категория размещения по ГОСТ 15150-69        | УХЛ1                                    |                    |           |             |                    |  |
| Средняя наработка до отказа, ч               | $4.0 \cdot 10^6$                        |                    |           |             |                    |  |
| Установленный полный срок                    |                                         |                    |           |             |                    |  |
| службы, лет                                  | 30                                      |                    |           |             |                    |  |
|                                              | •                                       |                    |           |             |                    |  |

### Примечания

<sup>1) –</sup> по согласованию с заказчиком, при номинальных мощностях до 100 В:А включительно класс точности обеспечивается от режима холостого хода обмотки до номинальной нагрузки;

<sup>2) –</sup> класс точности 3Р обеспечивается от холостого хода обмотки до номинальной нагрузки;
3) – по согласованию с заказчиком возможно использование делителя с другими значениями емкости

#### Знак утверждения типа

наносится на табличку технических данных трансформатора электрографическим способом и на титульный лист руководства по эксплуатации и паспорта типографским способом.

#### Комплектность средства измерений

Таблица 2 – Комплектность средства измерений

| Наименование                            | Обозначение                                            | Количество |
|-----------------------------------------|--------------------------------------------------------|------------|
| Трансформатор напряжения емкостной НДКМ | НДКМ-110, НДКМ-150,<br>НДКМ-220, НДКМ-330,<br>НДКМ-500 | 1 шт.      |
| Руководство по эксплуатации и паспорт   | ИРФУ.671254.003 РЭ                                     | 1 экз.     |

#### Поверка

осуществляется по документу ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки».

Основные средства поверки: трансформатор напряжения эталонный ОМОН-110 (регистрационный номер в Федеральном информационном фонде № 59180-14), трансформатор напряжения эталонный ОМОН-220 (регистрационный номер в Федеральном информационном фонде № 59181-14), трансформатор напряжения эталонный ОМОН-330/500 (регистрационный номер в Федеральном информационном фонде № 59182-14), прибор сравнения КНТ-03 (регистрационный номер в Федеральном информационном фонде № 24719-03), прибор электроизмерительный эталонный многофункциональный Энергомонитор-3.1КМ (регистрационный номер в Федеральном информационном фонде № 52854-13), магазин нагрузок МР3025 (регистрационный номер в Федеральном информационном фонде № 22808-07).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится в паспорт.

#### Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

# Нормативные и технические документы, устанавливающие требования к трансформаторам напряжения емкостным НДКМ

ГОСТ 1983-2015 Трансформаторы напряжения. Общие технические условия

ГОСТ Р 8.746-2011 ГСИ. Государственная поверочная схема для средств измерений коэффициента масштабного преобразования и угла фазового сдвига электрического напряжения переменного тока промышленной частоты в диапазоне от 0,1/ÖB до 750/ÖB кВ

ГОСТ 8.216-2011 ГСИ. Трансформаторы напряжения. Методика поверки

ТУ 3414-032-11703970-06 Трансформаторы напряжения емкостные серии НДКМ. Технические условия

#### Изготовитель

Акционерное общество «Раменский электротехнический завод Энергия» (АО «РЭТЗ Энергия»)

ИНН 5040010981

Адрес: 140105, г. Раменское, Московской обл., ул. Левашова, д. 21

Телефон (факс): +7 (496) 463 66 93 (+7 (496) 467 96 79)

Web-сайт: http://www.ramenergy.ru

#### Испытательные центры

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон (факс): +7 (495) 437-55-77 (+7 (495) 437-56-66)

E-mail: <u>office@vniims.ru</u> Web-сайт: www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

#### В части вносимых изменений:

Общество с ограниченной ответственностью «Испытательный центр разработок в области метрологии»

Адрес: 117546, г. Москва, Харьковский проезд, д. 2, этаж 2, пом. I, ком. 35, 36

Телефон: +7 (495) 278-02-48

E-mail: info@ic-rm.ru

Аттестат аккредитации ООО «ИЦРМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311390 от 18.11.2015 г.

(Редакции приказов Росстандарта № 1628 от 01.08.2018 г., №913 от 22.04.2019 г.)

| Заместитель                |
|----------------------------|
| Руководителя Федерального  |
| агентства по техническому  |
| регулированию и метрологии |

|      |   |          | А.В. Кулешов |
|------|---|----------|--------------|
| М.п. | « | <b>»</b> | 2020 г.      |