ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Трансформаторы тока электронные оптические типа ТТЭО

Назначение средства измерений

Трансформаторы тока электронные оптические типа ТТЭО (далее по тексту – трансформаторы) предназначены для измерения и масштабного преобразования значения силы переменного (в том числе – с апериодической составляющей), импульсного и постоянного тока и передачи результатов преобразования на электрические измерительные приборы, в системы коммерческого учета электрической энергии, устройствам измерения (в том числе показателей качества электроэнергии), защиты, автоматики, сигнализации и управления.

Описание средства измерений

Принцип действия трансформаторов основан на двух физических законах: законе полного тока и эффекте Фарадея. В чувствительном волокне происходит набег фаз поляризованного оптического излучения в присутствии магнитного поля, который передается по соединительной линии в измерительный блок для обработки. Измерительный блок извлекает фазовый набег, преобразует его в величину тока, и выдает измеренное значение на выходы с заданным коэффициентом передачи.

Закон полного тока для токов проводимости (следует из уравнений Максвелла) формулируется следующим образом: циркуляция (линейный интеграл) вектора напряженности Н магнитного поля постоянного электрического тока вдоль замкнутого контура L произвольной формы равен алгебраической сумме токов $\sum I$, охватываемых этим контуром:

$$\partial Bdl = SI , \quad B = \mu H$$
 (1)

Если замкнутый контур состоит из N витков произвольной формы, охватывающих токи, то (1) будет иметь вид:

$$\partial Bdl = N SI$$
 (2)

С другой стороны, согласно эффекта Фарадея сдвиг фаз $\Delta \phi$ между световыми волнами с циркулярными ортогональными поляризациями, распространяющимися в оптоволоконном витке чувствительного элемента трансформаторов, охватывающем проводник, в присутствии продольного магнитного поля тока с точностью до постоянной величины также равен циркуляции напряженности магнитного поля по тому же контуру, (при условии магнитооптической однородности вдоль контура)

$$\Delta \varphi = 4V \oint \vec{B} \, d\vec{l} \tag{3}$$

где V – константа Верде для кварца

Из уравнений (3) и (2) и заменяя:

$$\Sigma I$$
 на $I_{oбщ}$ имеем: $\Delta \varphi = 4$ VN $I_{oбщ}$ (4)

Уравнение (4) показывает, что отклик чувствительного элемента (сдвиг фаз между двумя световыми волнами с циркулярными поляризациями в замкнутой оптоволоконной петле) прямо пропорционален величине измеряемого тока и числу витков чувствительного контура.

Сдвиг фаз между световыми волнами измеряется оптической схемой трансформаторов и преобразуется в цифровую форму. Цифровой код синхронно подается на цифро-аналоговый преобразователь тока (для токовых выходов), цифро-аналоговый преобразователь напряжения (для потенциальных выходов), блок формирования цифровых пакетов данных, а также через дециматор на формирователь пропорциональных амплитуде измеренного тока частотных, импульсных и токовых выходов, а также цифрового кода в протоколе Modbus. Логическая схема трансформаторов представлена на рисунке 1.

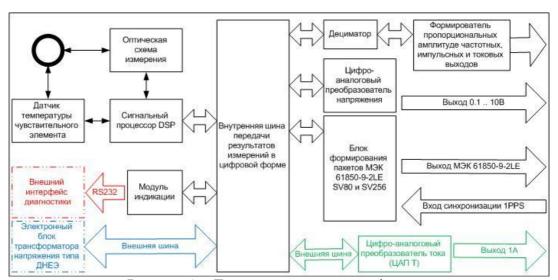


Рисунок 1 – Логическая схема трансформаторов

Трансформаторы включают в свой состав:

- оптоволоконные чувствительные элементы: опорные (рисунки 2, 3), шинные (рисунки 4, 5), гибкие (рисунок 6);
 - электронный блок (рисунки 7 9);
- блок вторичного преобразования измеренного сигнала в аналоговый вид (рисунок 10);
- резервированный блок питания повышенной надежности (в вариантном исполнении (рисунки 11 и 12).

Передача сигнала от чувствительного элемента до измерительного блока осуществляется по оптоволоконному кабелю на расстояние от 20 до 1200 м, что позволяет разместить измерительный блок в помещении с требуемыми условиями эксплуатации.

Для измерения тока трансформатором в исполнении ТТЭО-Г гибкий чувствительный элемент должен быть размещен таким образом, чтобы токонесущая шина была внутри замкнутого оптического контура чувствительного элемента, который должен сделать указанное в паспорте на прибор число витков вокруг шины, соответствующее номинальному значению измеряемого тока. При этом должны быть совмещены при помощи штатно поставляемого элемента крепления метки начала и конца чувствительного элемента. Правильная установка прибора ТТЭО-Г показана на рисунке 14 и в паспорте на прибор.

Для обеспечения возможности включения трансформаторов в систему онлайнмониторинга работоспособности трансформатор имеет специальный RS232 порт для чтения данных диагностики (доступных так же оператору на дисплее прибора). Порт диагностики работает только в режиме чтения данных и не имеет возможности изменения настроек прибора.

Положение в пространстве – вертикальное или горизонтальное.

Трансформаторы выполняются в следующих исполнениях:

1. ТТЭО-110 — трансформатор опорного исполнения с номинальным фазным напряжением $110/\sqrt{3}$ кВ. (рисунок 2);

- 2. ТТЭО-220 трансформатор опорного исполнения с номинальным фазным напряжением $220/\sqrt{3}$ кВ. (рисунок 3);
- 3. ТТЭО-Ш трансформатор шинного исполнения, предназначенный для установки непосредственно на жесткую ошиновку (вариант поставки с штатной шиной) или для пропускания сквозь отверстие гибкой или жесткой ошиновки. (рисунки 4 и 5);
- 4. $TTЭО-\Gamma$ трансформатор с чувствительным элементом в виде размыкаемой гибкой петли. (рисунок 6).

Рисунок 2 — высоковольтный изолятор с установленным чувствительным элементом $TT \ni O-110$

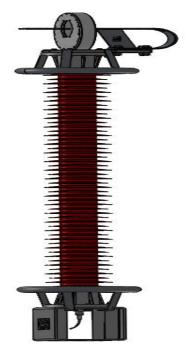


Рисунок 3 — высоковольтный изолятор с установленным чувствительным элементом ТТЭО-220

Рисунок 4 — чувствительный элемент ТТЭО-Ш с установленной штатной шиной

Рисунок 5 — чувствительный элемент ТТЭО-Ш в варианте поставки без штатной шины

Рисунок 6 – гибкий чувствительный элемент ТТЭО-Г

Рисунок 7 – электронный блок трансформаторов в исполнении без модуля частотных выходов (вид спереди)

Рисунок 8 – электронный блок трансформаторов в исполнении с модулями частотных выходов (вид спереди)

Рисунок 9 – электронный блок трансформаторов (вид сзади)

Рисунок 10 — электронный блок ЦАП Т для вывода пропорционального аналогового сигнала 1A трансформаторов

Рисунок 11 — электронный блок резерви рованного блока питания повышенной надежности (вид спереди)

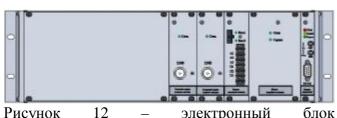
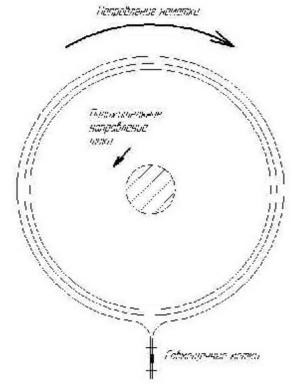



Рисунок 12 — электронный блок резервированного блока питания повышенной надежности (вид сзади)

Рисунок 13 — выносной проводной измеритель температуры

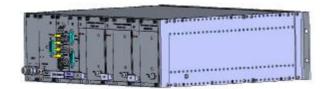


Рисунок 15 - место установки заводских пломб

Рисунок 14 – схема правильной установки гибкого чувствительного элемента ТТЭО-Г

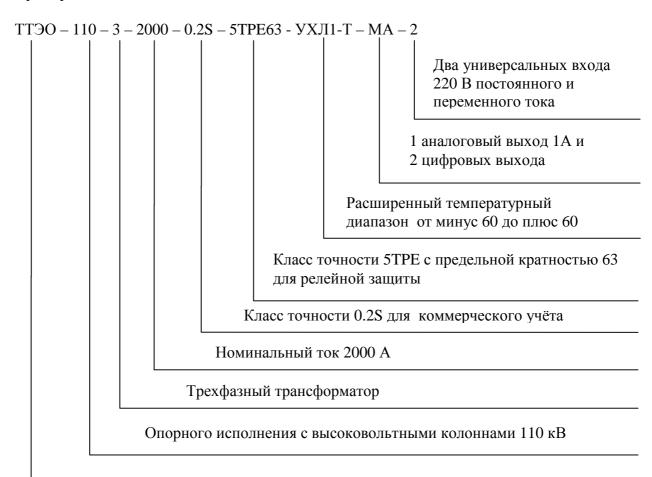

Условное обозначение трансформатора представлено в таблице 1.

Таблица 1 – Условное обозначение трансформаторов

ТТЭО	Обозначение типа: Трансформатор тока электронный оптический типа ТТЭО		
A	Исполнение прибора		
	110		Опорного исполнения с высоковольтными колоннами 110 кВ
	220		Опорного исполнения с высоковольтными колоннами 220 кВ
	Ш		Безопорного исполнения (шинный)
	Γ		С гибким чувствительным элементом
Б	Количе	ствс	измерительных блоков в крейте электронно-оптического блока
	1	Од	ин модуль (однофазная сеть или одна линия постоянного тока)
	2	Два	а модуля (две фазы или две линии постоянного тока)
	3	Tpı	и модуля (трехфазная сеть или три линии постоянного тока)
	Вариант н		стройки режима отображения на экране электронного блока
В	Без буквы		Переменный ток (среднеквадратичное значение)
	П Постоянный ток (среднее значение)		Постоянный ток (среднее значение)
Γ	Номинальный ток в амперах, для исполнения ТТЭО-Г указывается на один виток		
	чувствительного элемента		
Д	Класс точности прибора и предельная кратность для исполнения релейном классе		
	точности		
E	Диапазон рабочих температур чувствительного элемента		1 11 1
	УХЛ1		УХЛ1 по ГОСТ 15150-69 (минус 60плюс 40 °C)
	УХЛ1-Т	Γ	УХЛ1 по ГОСТ 15150-69 с расширенным температурным диапазоном
			минус 60 плюс 60 °C
	П Для установки в помещениях минус 10 плюс 40 °C		Для установки в помещениях минус 10 плюс 40 °C

Ж	Типы испо	спользуемых выходов, комбинация из символов			
	А Аналоговый 1 А				
	Ч	3 частотных, 1 импульсный, 1 Modbus, 1 слаботочный токовый			
		выход			
	П	Потенциальный выход			
	M	2 Цифровых выхода с числом выборок 4000 и 12800 в секунду			
		(80 и 256 выборок на период промышленной частоты)			
3	Тип приме	ененного источника питания			
	1	Один универсальный вход 220 В постоянного или переменного			
		тока			
	Два универсальных входа 220 В постоянного или переменного				
	тока				
	В	Высоконадежный резервированный блок питания			
И	Признак	наличия внешнего проводного термометра для компенсации			
	температу	турной зависимости			
	Без	Измерение в полном диапазоне рабочих температур			
	буквы	производится без внешнего датчика, либо с применением			
		встроенного в чувствительный элемент оптического термометра			
	П	Проводной термометр, размещаемый в зоне установки			
		чувствительного элемента (рисунок 8)			

Пример обозначения:

Трансформатор тока электронный оптический типа ТТЭО

Программное обеспечение

Встроенное программное обеспечение (далее по тексту — Π O) трансформаторов представляет собой набор микропрограмм, предназначенных для обеспечения нормального функционирования аппарата, управления интерфейсом и т.д. Данное Π O имеет метрологически значимые и незначимые части.

Уровень защиты от непреднамеренных и преднамеренных изменений – «Высокий» в соответствии с Р 50.2.077-2014.

Идентификационные данные ПО трансформаторов представлены в таблицах 2 и 3.

Таблица 2 – Характеристики метрологически значимого ПО

	1 1			
Наименование ПО	Идентификацион ное наименование ПО	Номер версии (идентифика ционный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
Встроенное ПО оптической схемы	DSP.bin	2.01	4F7F1448ED8B9F4 8E11274EC4FFB20 A8	md5
Встроенное ПО формирования данных замеров	FPGA.bin	2.09	D8D78B4767F3140 17C86B7D1F703EC D5	md5
Встроенное ПО формирования пропорциональн ых выходов	Measure.bin	2.13	E0D33FCC52D5C4 8E4F5EB8B2AA9D 639F	md5

Таблица 3 – Характеристики метрологически не значимого ПО

Наименование ПО	Идентификацион ное наименование ПО	Номер версии (идентифика ционный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
Встроенное ПО формирования пакета данных МЭК 61850-9-2	Mod_61850.bin	2.08	E86E4BC58934D10 01E90AC3EC3C0B 618	md5
Встроенное ПО индикации состояния на экране устройства	MU_I2.bin	2.28	06E771A1AD29FC0 EC53E20F0B913B8 BB	md5

Метрологические и технические характеристики

Диапазоны измеряемых величин, технические характеристики, а также пределы допускаемых погрешностей измерений приведены в таблицах 4-7.

Таблица 4 - Диапазоны и пределы допускаемых погрешностей преобразования силы переменного тока

Характеристика	Значение	
Номинальное напряжение переменного тока, кВ	Вариант исполнения	Фазное
		напряжение
	TT9O-110	$110/\sqrt{3}$
	TT9O-220	$220/\sqrt{3}$
	ТТЭО-Г и ТТЭО-Ш	0-750
Номинальный первичный ток Іном, А*	ТТЭО-110	
	ТТЭО-220	от 100 до 3000
	ТТЭО-Ш	
	ТТЭО-Г	от 600 до 250000
Номинальный вторичный ток для аналогового выхода внешнего цифро-аналогового преобразователя, А	1**	
Классы точности по ГОСТ Р МЭК 60044-8-2010	0,2S; 0,5S; 1,0	; 5P; 5TPE
Номинальная нагрузка на аналоговом выходе внешнего цифро-аналогового преобразователя S _{2ном} (коэффициент мощности соѕф=1), В≯А	от 1 до	15
Номинальная частота измеряемого тока, Гц	50	
Номинальный коэффициент расширенного первичного тока	от 1,2 до	0 4,0
Коэффициент безопасности внешнего цифроаналогового преобразователя тока, не менее	3,0	
Количество измеряемых фаз	1 – 3 *	**

Примечание:

** Наличие и тип выходов зависит от варианта исполнения.

^{*} Значение номинального тока зависит от количества оборотов гибкого чувствительного элемента вокруг токоведущей шины, числа оборотов токоведущей шины вокруг чувствительного элемента и настроек прибора. Точное число витков чувствительного элемента для получения заданного номинального тока указывается в паспорте на прибор. Прибор допускает снижение номинального тока относительно указанных значений путем кратного (допускается только целое число витков) увеличения оборотов токоведущей шины вокруг чувствительного элемента, при этом механические, термические и динамические показатели использованной для таких целей шины должны быть подтверждены соответствующими расчетами при проектировании;

Таблица 5 - Диапазоны и пределы допускаемых погрешностей преобразования силы постоянного тока

постоянного тока				
Характеристика	Значение			
Номинальное напряжение постоянного	Вариант исполнения Фазное напряже			
тока, кВ	TT9O-110 100			
	TT9O-220	200		
	ТТЭО-Г и ТТЭО-Ш	0-1200		
Номинальное значение первичной силы	TT9O-110			
постоянного тока Іном, А*	TT9O-220	от 100 до 6000		
	Ш-ОЄТТ			
	ТТЭО-Г	от 600 до 330000		
Номинальный вторичный ток для				
аналогового выхода внешнего цифро-	1**			
аналогового преобразователя, А				
Пределы допускаемой относительной				
погрешности коэффициента	$\pm 0.2; \pm 0.5; \pm 1.0$			
масштабного преобразования силы	пы			
постоянного тока, %				
Номинальная нагрузка на аналоговом				
выходе внешнего цифро-аналогового	от 1 до 15			
преобразователя тока, В:А				
Количество измеряемых линий для	1 – 3 *	*		
постоянного тока	1-3			

Примечание:

Таблица 6 – Диапазоны и пределы допускаемых погрешностей преобразования силы переменного и постоянного тока для дополнительных выходов

** Наличие и тип выходов зависит от варианта исполнения.

Характеристика	Значение
Пределы допускаемой относительной погрешности коэффициента масштабного преобразования силы постоянного и переменного тока для дополнительных выходов, %	$\pm 0,2; \pm 0,5; \pm 1,0$
Номинальное напряжение потенциального выхода, В	от 0,1 до 10
Минимальное входное сопротивление приборов, подключаемых к потенциальному выходу, кОм	400
Число встроенных низкоуровневых токовых выходов	1*
Номинальный вторичный ток встроенного низкоуровневого токового выхода, мА	020; 420; 040
Максимальное сопротивление вторичной цепи встроенного низкоуровневого токового выхода, Ом	50
Число встроенных частотных выходов	3*

^{*} Значение номинального тока зависит от количества оборотов гибкого чувствительного элемента вокруг токоведущей шины, числа оборотов токоведущей шины вокруг чувствительного элемента и настроек прибора. Точное число витков чувствительного элемента для получения заданного номинального тока указывается в паспорте на прибор. Прибор допускает снижение номинального тока относительно указанных значений путем кратного (допускается только целое число витков) увеличения оборотов токоведущей шины вокруг чувствительного элемента, при этом механические, термические и динамические показатели использованной для таких целей шины должны быть подтверждены соответствующими расчетами при проектировании;

Характеристика	Значение
Номинальный масштабный коэффициент преобразования частотных выходов, Гц/кА	1 – 150 000
Минимальное сопротивление вторичной цепи частотных выходов, Ом	100
Число встроенных интегрирующих импульсных выходов	1*
Амплитуда импульсов, В	15 ± 2
Длительность импульса, мс	$10 - 150 \pm 0.1$
Номинальный масштабный коэффициент преобразования импульсных выходов, кА-с	1-160
Минимальное сопротивление вторичной цепи импульсного выхода, Ом	100
Число встроенных Modbus выходов	1*
Период обновления данных на низкоуровневых частотных, импульсных, токовых и Modbus портах передней панели, мс	100
Примечание:	
* Наличие и тип выходов зависит от варианта исполнения.	

Таблица 7 – Общие технические характеристики трансформаторов

Таблица 7 – Общие технические характеристики трансформаторов					
Характеристика	Значение				
Диапазон полосы пропускания частот при					
наличии гармоник в измеряемом сигнале,		20 -	- 9000		
Гц					
Номинальное время активации, мкс			16		
Номинальный ток активации	ТТЭО-	110			
	TT90-	220	(0,3 % от Іном	
	ТТЭО-	-Ш			
	ТТЭО	-Γ	0,3 %	о от Іном/Пвитков	
Рабочая температура, °С			УХЛ	I (ΓΟCT 15150-69)	
	Чувствите	льный		или	
	элеме	HT	МИН	ус 60 плюс 60	
			или м	иинус 10 плюс 40	
	Электроннь	іе блоки	МИ	нус 10 плюс 40	
Относительная влажность воздуха, %	от 10 до 95				
Атмосферное давление, кПа (мм. рт. ст.)	от 60 до 106,7		7		
	(от 460 до 800)		•		
(OT 46		о до во	10)		
Группа механического исполнения – М29	Исп.	Электронные Чувствительный		Чувствительный	
по ГОСТ 17516.1-90	PICII.	блок	СИ	элемент	
	TT9O-110				
	TT9O-220	M40 M		M40	
	ТТЭО-Ш				
	ТТЭО-Г			M5	
Высота над уровнем моря, м не более	1000				
Окружающая атмосфера	Не взрывоопасная, не содержащая				
	токопроводящую пыль и агрессивные газы				
	типа II по ГОСТ 15150-69.				

У	2	
Характеристика		ичение
Нагрузка от тяжения провода, Н	Исполнение	Допустимая нагрузка
	TT90-110	2000
	TT90-220	2000
	ТТЭО-Ш	2000
	ТТЭО-Г	Не допускается приложение усилий к чувствительному элементу
Рабочее положение первичных датчиков тока	Л	юбое
Длина соединительного кабеля, м	От 20) до 1200
Длина чувствительного элемента для исполнения ТТЭО-Г, м	от 1	1 до 30
Напряжение питания измерительного блока, В	Исполнение с одним источником питания	220±44 Переменного или постоянного тока без резервирования
	Исполнение с двумя источниками питания	220±44 Переменного или постоянного тока с резервированием
	Исполнение с источником питания для ответственных присоединений	220±44 Переменного или постоянного тока с резервированием и возможностью «горячей» замены элементов и резервирования от кратковременных пропаданий напряжения длительностью до 2 секунд
Номинальная частота питающей сети, Гц		50
Потребляемая мощность электронного блока, Вт, не более		150
Потребляемая мощность электронного блока ЦАП Т, Вт, не более		200
Габаритные размеры электронных блоков $(Д\times III\times B)$, мм, не более	390×465×220 (3U	+ оптический кросс)
Габаритные размеры высоковольтной колонны ТТЭО-110 (Д×Ш×В), мм, не более	650×3	355×1900
Габаритные размеры высоковольтной колонны ТТЭО-220 (Д×Ш×В), мм, не более	660×5	500×3000
Габаритные размеры чувствительного элемента ТТЭО-Ш (Д×Ш×В), мм, не более	650×355×400	
Масса электронного блока ТТЭО, кг, не более		12

Характеристика	Значение			
Масса электронного блока ЦАП Т, кг, не	15			
более	13			
Масса высоковольтной колонны ТТЭО-110,	62			
кг, не более	02			
Масса высоковольтной колонны ТТЭО-220,	120			
кг, не более	120			
Масса чувствительного элемента ТТЭО-Ш,	10			
кг, не более	10			
Средний срок службы, лет	25			
Наработка на отказ, ч	120000			
Примечание:				
* Наличие и тип выходов зависит от варианта исполнения.				

Знак утверждения типа

Знак утверждения типа наносят на табличку трансформаторов методом термопечати или трафаретной печати или на титульные листы паспорта типографским способом.

Комплектность средства измерений

Комплект поставки приведён в таблице 8.

Таблица 8 – Комплект поставки трансформаторов

Наименование изделия	Кол-во
Измерительный блок	По числу контуров
измерительный олок	измерения
Цифроаналоговый преобразователь тока	0 или 1 комплект
Внешний резервированный блок питания с защитой от	
кратковременного пропадания напряжения и возможностью замены	0 или 1 комплект
блоков в горячем режиме	
Катушка с оптическим волокном для соединения чувствительного	1 комплект
элемента с электронным блоком	1 KUMIIJICKI
Высоковольтные колонны для исполнений ТТЭО-110 и ТТЭО-220	1 комплект
Чувствительный элемент для исполнения ТТЭО-Ш	1 комплект
Гибкий чувствительный элемент для исполнения ТТЭО-Г	1 комплект
Шкаф с оптической кабельной муфтой для исполнений ТТЭО-110,	0 или 1 шт.
ТТЭО-220 и ТТЭО-Ш	Оили г шт.
Паспорт	1 шт.
Инструкция по монтажу и наладке	1 шт.

Поверка

осуществляется в соответствии с документом МП 60487-15 «Трансформаторы тока электронные оптические типа ТТЭО. Методика поверки», утвержденным Φ ГУП «ВНИИМС» в январе 2015 г.

Основные средства поверки приведены в таблице 9.

Таблица 9 – Основные средства поверки трансформаторов

Наименование и тип средства поверки	Требуемые характеристики
Трансформатор тока измерительный	Диапазон первичного тока от 20 до 36000 А, класс
лабораторный ТТИ-200	точности 0,01

Наименование и тип средства поверки	Требуемые характеристики
Трансформатор тока эталонный	Номинальные токи: от 1 до 5000, класс точности
ТТИ-5000	0,05
Прибор сравнения КНТ-05	Пределы допускаемой относительной погрешности
	± 0,0005 %; пределы допускаемой абсолютной
	угловой погрешности $\pm 0,005$ мин.
Прибор электроизмерительный	Пределы допускаемой относительной погрешности
эталонный многофункциональный	измерения напряжения переменного тока
Энергомонитор-3.1 КМ	$\pm [0.01+0.002\cdot (1.2\cdot U_H/U-1)]$ %; пределы допускаемой
	относительной погрешности измерения напряжения
	постоянного тока $\pm [0.01+0.005 \cdot (1.7 \cdot \text{U}_{\text{H}}/\text{U}-1)]$ %;
	пределы допускаемой абсолютной погрешности
	измерения угла фазового сдвига ±0,01 градуса
Магазин нагрузок МР 3027	Пределы допускаемой погрешности от
	номинального значения нагрузки ± 4 %
Нановольт-микроомметр	Диапазон измерения напряжения постоянного тока
34420 A	(0 – 100) В, допускаемая основная относительная
	погрешность измерения
	$\pm (0.005 \% \cdot U_{u_{3M}} + 0.002 \% \cdot U_{npeden})$
Частотомер электронно-счетный	Диапазон измерения частот 0,001 Гц – 350 МГц,
53220A	пределы допускаемой основной абсолютной
	погрешности измерения $\pm 1 \cdot 10^{-6}$ Гц
Секундомер электронный ИВПР-203М	Диапазон измерения длительности – 1
	миллисекунда – 999 999,999 секунд,
	базовая погрешность измеряемых величин: ±0,01%
	±1 мс и ±0,01% +10 мс ±1/2 период
Мультиметр	Пределы допускаемой погрешности измерения тока
34461A	на пределе 100 mA ± 0,01 %; пределы допускаемой
	погрешности измерения тока на пределе
	1 A ± 0,05 %
Шунт эталонный многопредельный	Пределы допускаемой погрешности измерения тока
АКИП-7501	шунтом 200 А ± 0,02 %; пределы допускаемой
	погрешности измерения тока шунтами 20 mA – 20 A
	± 0,01 %
Осциллограф цифровой DSO 1004	Диапазон коэффициента развертки составляет от 3
	нс/дел до 5 с/дел, погрешности коэффициента
	развертки $\pm 50 \times 10^{-6}$
<i>Π</i>	

Примечание:

 $U_{u_{3M}}$ ($I_{u_{3M}}$) – измеренное значение напряжения (силы) постоянного тока;

 U_{npeden} – предел измерения напряжения постоянного тока;

е.м.р. – единица младшего разряда.

Сведения о методиках (методах) измерений

Сведения о методиках (методах) измерений приведены в паспорте.

Нормативные и технические документы, устанавливающие требования к трансформаторам тока электронным оптическим типа TTЭО

- 1. ГОСТ Р МЭК 60044-8-2010 «Трансформаторы измерительные. Электронные трансформаторы тока».
- 2. ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».

3. ТУ 6681-001-69571383-2014 Технические условия «Трансформаторы тока электронные оптические типа ТТЭО.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

При выполнении работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

Изготовитель

Закрытое акционерное общество «Профотек» (ЗАО «Профотек»), г. Москва.

Адрес: 123104, Россия, г. Москва, Тверской б-р, д.13, стр.1

Тел: (495) 775-83-39 E-mail: <u>info@profotech.ru</u> <u>http://www.profotech.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66; E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в

целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

М.п. «_ »_____ 2015 г.