ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

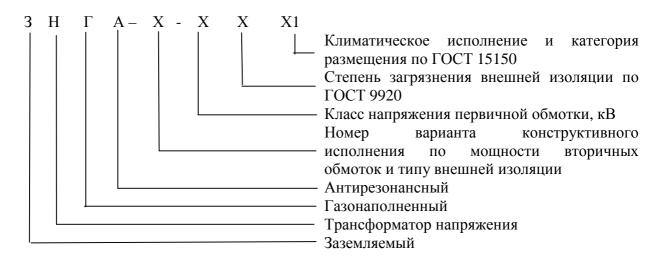
Трансформаторы напряжения ЗНГА-110 (климатические исполнения У и ХЛ)

Назначение средства измерений

Трансформаторы напряжения ЗНГА-110 (климатические исполнения У и ХЛ) (далее трансформаторы) предназначены для передачи сигналов измерительной информации приборам учета, измерения, защиты, автоматики и сигнализации в сетях трехфазного переменного тока частотой 50 Гц с глухозаземленной и эффективно-заземлённой нейтралью класса напряжения 110 кВ.

Описание средства измерений

Принцип действия трансформаторов напряжения основан на масштабном преобразовании напряжения с целью передачи сигнала измерительной информации различным приборам.


Трансформаторы являются однофазными, электромагнитными, четырехобмоточными трансформаторами напряжения с элегазовой изоляцией в герметичном корпусе.

Трансформаторы изготавливаются в климатических исполнениях У и XЛ, категории размещения 1 по ГОСТ 15150-69.

Трансформаторы в зависимости от мощности вторичной обмотки и типу внешней изоляции выпускаются в шести вариантах исполнения (1, 2, 3, 4, 5, 6).

Трансформаторы предназначены для работы на высоте до 1000м над уровнем моря и температуре окружающей среды в пределах от минус 45 до 40° C (для У1), от минус 60 до 40° C (для ХЛ1).

Трансформаторы напряжения ЗНГА-110 имеют условное обозначение:

Пример записи обозначения трансформатора:

«Трансформатор напряжения ЗНГА-1-110-II*-У1, ТУ 3414-015-00213606-2012», трансформатор напряжения ЗНГА, конструктивнее исполнение 1, класс напряжения первичной обмотки 110 кВ, степень загрязнения изоляции II*, климатическое исполнение У1.

Общий вид трансформаторов представлен на рис. 1. Клеймение трансформатора после поверки осуществляется в виде наклейки на стенку корпуса (указано стрелкой).

Рисунок 1

Метрологические и технические характеристики

Основные метрологические и технические характеристики трансформаторов приведены в таблицах 1 - 4.

Таблица 1

Наименование параметра	Значение			
Номинальное первичное напряжение, кВ	110/√3			
Номинальное вторичное напряжение, В:				
- основной обмотки для учета $(a_1 - x_1)$;	$100/\sqrt{3}$			
- основной обмотки для измерений $(a_2 - x_2)$;		100)/√3	
- дополнительной обмотки $(a_{\scriptscriptstyle \rm J} - x_{\scriptscriptstyle \rm J})$		10	00	
Номинальная частота, Гц		5	0	
- Номер варианта конструкторского исполнения по				
мощности вторичных обмоток и типу внешней	1, 5	2	3, 6	4
изоляции:				
- по типу внешней изоляции	фарфор	фарфор	полимер	полимер
- по номинальной мощности вторичных обмоток				
$a_1 - x_1$ и $a_2 - x_2$ при отсутствии нагрузки на других	75	150	75	150
обмотках в классе точности $0.2 (\cos j = 0.8, B A)$				
Номинальные нагрузки /класс точности вторичных				
обмоток и при их совместном включении				
$a_1 - x_1$	20/0,2	40/0,2	20/0,2	40/0,2
$a_2 - x_2$	100/0,5	150/0,5	100/0,5	150/0,5
$a_{\mathrm{J}} - x_{\mathrm{J}}$	30/3P	60/3P	30/3P	60/3P
Предельная мощность, В•А:				
- первичной обмотки	2000			
- вторичных обмоток	1200			
Наибольшее рабочее напряжение первичной	126/√3			
обмотки, кВ				
Удельная длина пути утечки в год, % от массы	0,5			
элегаза, не более				
Степень защиты оболочек	IP54			
Габаритные размеры, мм, не более	2121x794x812			
Масса трансформатора, кг, не более	390			
Средняя наработка на отказ	4·10 ⁵			
Средний срок службы, лет, не менее	30			

Таблица 2. Класс точности вторичных обмоток трансформатора при отсутствии нагрузки на других обмотках.

Наименование параметра	Вторичная обмотка				
параметра	Обмотка для учета a_1 - x_1		Обмотка для измерений a_2 - x_2		Дополнительная обмотка a_{π} - x_{π}
Номер варианта конструктивного исполнения	1;3;5;6	2;4	1;3;5;6	2;4	все
Класс точности	0,2	0,2	0,2	0,2	3P
Мощность нагрузки, В:А	75	150	75	150	1200
Класс точности	-	-	0,5	0,5	-
Мощность нагрузки, В.А	-	-	150	250	-

Таблица 3. Классы точности вторичных обмоток трансформатора при нагрузках,

включенных на вторичные обмотки.

	-	Вторичная обмотка				Суммарная				
Наименование параметра	для у a ₁ -:	-		•		дополнительная a_{π} - x_{π}		мощность трансформатора, В·А		
Номер варианта конструктивного исполнения	1;3;5;6	2;4	1;3;5;6	2;4	1;3;5;6	2;4	1;3;5;6	2;4		
Класс точности	0,	2	0,5		0,5		3P			
Мощность нагрузки, В·А	5-20	5-40	25-100	37,5- 150	7,5-30	15-60	150	250		

Таблица 4. Допускаемые значения погрешностей дополнительной обмотки.

Первичное	Мощность	Предел допускаемой погрешности		
напряжение, % от	нагрузки, В·А	по напряжению, %	по углу, минут	
номинального				
2		-0,1	-4	
5	300	-0,1	-4	
150	300	-0,1	-4	
190		-0,1	-4	
2		-1,8	-11	
5	1200	-1,8	-11	
150	1200	-1,8	-11	
190		-1,8	-11	

Знак утверждения типа

Знак утверждения типа наносится на корпус трансформатора в виде наклейки или другим способом, не ухудшающим качества, и на титульных листах руководства по эксплуатации и паспорта типографским способом.

Комплектность средства измерений

1 Трансформатор напряжения ЗНГА-110	1 шт.;
2 Руководство по эксплуатации ДУБК.671243.001РЭ	1 экз.;
3 Паспорт ДУБК.671243.001 ПС	1 экз.

Поверка

осуществляется по ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки».

Основные средства поверки:

- преобразователь напряжения измерительный высоковольтный емкостной масштабный ПВЕ-110, кл.т. 0,05 (госреестр №32575-11).
- магазин нагрузок МР3025(57,7 В;100 В-80,42В А;200В А) (госреестр №22808-07);
- прибор для измерения электроэнергетических величин и показателей качества электрической энергии «Энергомонитор-3.3Т», диапазон измерений напряжения от 40 до 400 В; диапазон измерений тока 0,5;до 3000А, ПГ измерения напряжения \pm [0.1+0.01((U_H/U)−1)]%, погрешность измерения тока \pm [0.1+0.01((I_H/I)−1)]% (госреестр №31953-06).

Сведения о методиках (методах) измерений

изложены в руководстве по эксплуатации ДУБК.671243.001 РЭ «Трансформаторы напряжения ЗНГА-110 (климатические исполнения У и ХЛ)».

Нормативные и технические документы, устанавливающие требования к трансформаторам напряжения ЗНГА-110 (климатические исполнения У и ХЛ)

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия» ГОСТ 8.216-2011 «Трансформаторы напряжения. Методика поверки» ТУ 3414-015-00213606-2012 «Трансформатор напряжения ЗНГА-110. Технические условия»

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- выполнение работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

Изготовитель

ОАО ВО «Электроаппарат»

Адрес:199106, г. Санкт-Петербург, 24 линия В.О., д. 3-7.

Телефон: (812) 677-83-83, Факс: (812) 677-83-84,

e-mail: box@ea.spb.ru.

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»,. Адрес: 190005, Санкт-Петербург, Московский пр., 19.

тел./факс +7(812)251-76-01/+7(812)113-01-14,

e-mail: info@vniim.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

		С.С. Голубев
Мп«	<i>»</i>	2015 г