ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакциях, утвержденных приказами Росстандарта № 933 от 10.07.2017 г., № 1980 от 14.09.2018 г., № 2772 от 21.11.2019 г., № 997 от 29.05.2020 г.)

Расходомеры многофазные Roxar MPFM 2600

Назначение средства измерений

Расходомеры многофазные Roxar MPFM 2600 (далее – расходомеры) предназначены для измерений текущего расхода и массы сырой нефти, сырой нефти без учета воды, объемной доли воды, текущего расхода газа в объемных и массовых единицах и объема газа в многофазных потоках продукции нефтяных скважин без предварительной сепарации измеряемой среды.

Описание средства измерений

В основе принципа работы расходомера лежит использование различий в физических свойствах компонент измеряемой среды, в частности, значений диэлектрической проницаемости, электропроводности и плотности.

В расходомере реализованы отдельные функции определения состава и скорости измеряемой среды.

При определении состава многофазного потока измеряется импеданс, включающий электрическую емкость и проводимость, а также давление и температура.

Определение скорости выполняется одним из двух методов в зависимости от газосодержания: корреляционным или с помощью трубы Вентури. Выбор метода осуществляется автоматически.

При конфигурировании расходомера в него заносят информацию о следующих свойствах измеряемой среды — плотности нефти/воды/газа, диэлектрической проницаемости нефти, электропроводности воды, таблицы PVT-свойств нефти.

Возможна дополнительная комплектация расходомера гамма-плотномером для измерений плотности многофазного потока измеряемой среды.

Основными элементами расходомера являются:

- корпус измерителя:
- труба Вентури по ISO 5167-2003;
- преобразователь многопараметрический 3051SMV (номер в Федеральном фонде по обеспечению единства измерений, далее рег. № 46317-15, 66515-17) или преобразователь многопараметрический Rosemount 4088 (рег. № 62411-15), для измерения давления, перепада давления, температуры, массового расхода и массы, объемного расхода приведенного к стандартным условиям;
- двухуровневые датчики электроды DP26, являющиеся обкладками конденсатора, датчиками кондуктометра и датчиками корреляционного преобразователя скорости;
 - узел для подключения гамма-плотномера;
- электронное оборудование, служащее для измерения импеданса с помощью электродов DP26 и сверхскоростной прямой обработки и контроля данных;
- корпус компьютера потока, имеющий разные варианты исполнения в зависимости от требуемого класса защиты;
- отсечной сдвоенный запорно-спускной клапан модельного ряда Parker для отсечки датчиков от измерительной среды;
- компьютер потока, представляющий собой вычислительный блок для быстрого выполнения всех алгоритмов вычисления параметров потока, обеспечения связи со всеми внутренними средствами измерений, взаимодействия с внешним программным обеспечением (далее ПО) «MPFM 2600 Service Console» (установленным на переносном или персональном компьютере) и клиентскими системами.

Для получения результатов измерений текущего расхода и количества сырой нефти, воды и газа в объёмных и массовых единицах используется ПО «Flow Computer Software Version 4.06», установленное в энергонезависимую память компьютера потока.

Общий вид расходомера приведен на рисунке 1. Схема пломбировки от несанкционированного доступа приведена на рисунках 2 и 3.

Рисунок 1 – Фотография общего вида расходомера многофазного Roxar MPFM 2600

Механическая защита от несанкционированного доступа осуществляется пломбированием наклейками корпуса компьютера потока, а также выходов интерфейсов преобразователя многопараметрического и блока полевой электроники.

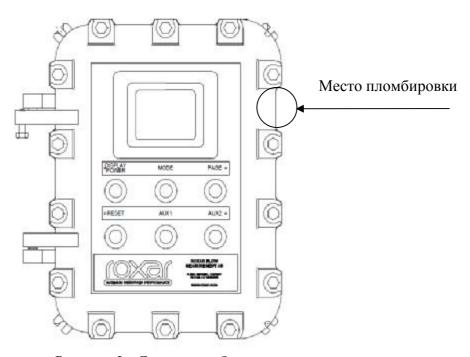
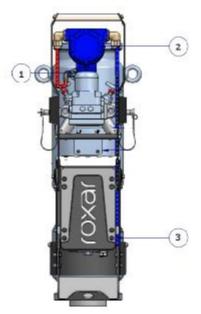



Рисунок 2 - Схема пломбировки корпуса компьютера потока

- 1 место пломбирования интерфейса датчика температуры
- 2 место пломбирования интерфейса многопараметрического датчика

3 – место пломбирования интерфейса блока электроники

Рисунок 3 - Схема пломбировки интерфейсов датчиков

Программное обеспечение

Данные, полученные при измерениях, обрабатываются с помощью ПО «Roxar MPFM Sensor software version 4.06», реализующего алгоритмы совместного решения уравнений, содержащих искомые и измеренные физические величины, результаты вычислений в виде значений текущих расходов и количества отдельных компонентов, а также их динамики, представляются на локальном дисплее в табличном и графическом виде. Идентификационные данные ПО указаны в таблице 1.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	Service Console	
Номер версии (идентификационный номер)		
ПО	не ниже 2.0	
Цифровой идентификатор ПО	не применяется	

Уровень защиты ПО системы от непреднамеренных и преднамеренных изменений соответствует уровню защиты «высокий» в соответствии с Р 50.2.077-2014 «ГСИ. Испытания средств измерений в целях утверждения типа. Проверка защиты программного обеспечения»

Метрологически значимая часть ПО СИ и измеренные данные достаточно защищены с помощью специальных средств защиты от непреднамеренных и преднамеренных изменений.

Конструкция расходомеров обеспечивает ограничение доступа к метрологически значимой части ПО в целях предотвращения несанкционированных настроек и вмешательства, которые могут привести к искажениям результатов измерений.

Метрологические и технические характеристики

Метрологические и основные технические характеристики расходомера указаны в таблице 2 и 3.

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений массового расхода жидкости (сырой нефти) в	от 0,1 до 2000
составе нефтегазоводянной смеси, т/ч	
Диапазон измерения объемной доли воды в сырой нефти	от 0 до 100
(обводненности), % абс	
Диапазон измерений объемного расхода газа при рабочих	от 0 (0) до 3080
(стандартных) условиях в составе нефтегазоводянной смеси, м ³ /ч	$(1\ 000\ 000)$
Допускаемая относительная погрешность измерений массы и	
массового расхода сырой нефти, %:	
- при содержании объемной доли газа от 0 % до 90 % включ.	±2,5
- при содержании объемной доли газа св. 90 % до 95 % включ.	±5,0
- при содержании объемной доли газа св. 95 % до 98 %	±8,0
Допускаемая относительная погрешность измерений массы и	
массового расхода сырой нефти без учета воды:	
- при содержании объемной доли воды в сырой нефти не более 70 %	±6,0
- при содержании объемной доли воды в сырой нефти св. 70 % до 95 %	±15,0
Допускаемая относительная погрешность измерений объема	
свободного нефтяного газа, приведенного к стандартным условиям, %:	
- при содержании объемной доли газа от 0 % до 25 % включ.	±7,0
- при содержании объемной доли газа св. 25 % до 100 %	±5,0
Допускаемая абсолютная погрешность измерений содержания	
объемной доли воды:	
- при содержании объемной доли газа от 0 % до 85 %	±2,0
- при содержании объемной доли газа св. 85 % до 95 % включ.	±3,0
- при содержании объемной доли газа св. 95 % до 98 % включ.	±4,0

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Монтаж	Вертикальный с восходящим
	потоком
Измеряемая среда	нефть/вода/газ
Диаметр условного прохода, мм	от 35 до 220
Диапазон объёмного содержания газа в потоке (GVF), %	от 0 до 100
Вязкость измеряемой среды, сСт	Любая
Максимальное давление в трубопроводе, МПа, не более	34,5
Диапазон температур измеряемой среды, С°	от - 40 до + 130
Интерфейс связи	RS-232/RS-485/Ethernet
Протокол обмена данными	Modbus ASCII/RTU/TCP
Диапазон температуры окружающей среды, С°	от - 20 до + 60
Напряжение питания, В:	
- от сети переменного тока частотой (50±1) Гц	от 100 до 242
- постоянного тока	от 18 до 36
Потребляемая мощность, Вт (ВА), не более	12
Длина расходомера, мм, не более	1200
Масса расходомера, кг, не более	900
Средняя наработка на отказ, ч, не менее	100000
Средний срок службы, лет	20

Знак утверждения типа

наносится на маркировочную табличку расходомера методом наклейки и/или на титульные листы эксплуатационной документации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность расходомера

Наименование	Обозначение	Количество
Расходомер многофазный	Roxar MPFM 2600	1 шт.
Комплект запасных частей и		
принадлежностей	-	по специальному заказу
Функциональное описание	-	1 экз.
Руководство по эксплуатации	-	1 экз.
Методика поверки	МП 0168-9-2014 с	
	изменением № 2	1 экз.

Поверка

осуществляется по документу МП 0168-9-2014 с изменением № 2 «Инструкция. ГСИ. Расходомеры многофазные Roxar MPFM 2600. Методика поверки», утверждённому ФГУП «ВНИИР» $18.12.2019~\Gamma$.

Основные средства поверки:

- Государственный первичной специальный эталон единицы массового расхода газожидкостных смесей ГЭТ 195-2011 (далее – ГЭТ 195), диапазон воспроизведения:

массового расхода газожидкостной смеси (далее - ГЖС) от 2 до 110 т/ч; объемного расхода газа, приведенного к стандартным условиям от 0.1 до $250 \text{ м}^3/\text{ч}$; расширенная неопределенность (при коэффициенте охвата k=2) воспроизведения: массового расхода ГЖС 0.46 %;

объемного расхода газа, приведенного к стандартным условиям 0,38 %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к расходомерам многофазным Roxar MPFM 2600

ГОСТ Р 8.615-2005 ГСИ. Измерения количества извлекаемой из недр нефти и нефтяного газа. Общие метрологические и технические требования

ГОСТ 8.637-2013 ГСИ. Государственная поверочная схема для средств измерений массового расхода многофазных потоков

Техническая документация фирмы изготовителя

Изготовитель

Фирма «Emerson SRL», Румыния

Адрес: 400641 Румыния, Cluj-Napoca, Str. Emerson, Nr. 4

Телефон (факс): + 47 51 8800 (+ 47 51 8801)

Заявитель

Общество с ограниченной ответственностью «Эмерсон» (ООО «Эмерсон»)

Адрес: 115054, г. Москва, ул. Дубининская, д. 53, стр 5 эт. 4, ком. 7Б

Телефон (факс): (495) 995-95-59 ((495) 424-88-50)

E-mail: <u>info.ru@emerson.com</u>

Испытательный центр

Всероссийский научно-исследовательский институт расходометрии – филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева»

(ВНИИР – филиал ФГУП «ВНИИМ им. Д.И. Менделеева»)

Адрес: 420088, Республика Татарстан, г. Казань, ул.2-я Азинская, 7А

Телефон (факс): (843)272-70-62, (272-00-32)

E-mail: office@vniir.org

Аттестат аккредитации ВНИИР – филиала ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310592 от $24.02.2015 \, \Gamma$.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____»____2020 г.