ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Приборы для измерения электрической ёмкости и тангенса угла потерь конденсаторов МЦЕ-24АМ

Назначение средства измерений

Приборы для измерения электрической ёмкости и тангенса угла потерь конденсаторов МЦЕ-24AM (далее – приборы) предназначены для автоматического измерения на частоте 50 Гц и 100 Гц электрической ёмкости (С) и тангенса угла потерь (tgδ) электролитических и других конденсаторов, а также для измерения и контроля тока утечки при подаче на конденсатор напряжения поляризации от внешнего или от внутреннего источника.

Описание средства измерений

В приборе применен принцип прямого измерения реактивной (емкостной) и активной составляющих сигнала на выходе измерительной мостовой схемы.

Подключение конденсатора четырёхзажимное, схема замещения последовательная. Подключение измеряемого конденсатора осуществляется с помощью измерительного жгута УБМ4.854.343. Пуск прибора ручной, автоматический с интервалом между измерениями от 0,3 до 5 с и внешний.

Прибор изготовляется в двух модификациях: МЦЕ-24АМ1 и МЦЕ-24АМ2. Прибор МЦЕ-24АМ1 в отличии от МЦЕ-24АМ2 имеет внутренний источник поляризующих напряжений до 69,9 В и может измерять ток утечки и разбраковку конденсаторов по току утечки относительно установленной границы на группы «ГОДЕН» и «БРАК» при подаче на конденсатор поляризующего напряжения до 69,9 В.

Измерение параметров конденсаторов при поляризующих напряжениях до 630 В возможно при использовании внешнего источника поляризующих напряжений ИТУК-БНП, совмещённого с измерителем тока утечки.

Информация о результатах измерений и разбраковки выводится также на выходные разъёмы прибора.

Внешний вид прибора показан на рисунках 1a (МЦЕ-24AM1) и 2a (МЦЕ-24AM2). Места для опломбирования указаны на рисунках 1б и 2б.

Рисунок 1а

Рисунок 1б

Рисунок 2а

Рисунок 2б

Метрологические и технические характеристики

Метрологические и технические характеристики представлены в табл. 1 и 2.

Таблица 1

Наименование параметра	Значение
Частота напряжения переменного тока, Гц	(50,0±0,5) (100±1)
Эффективное значение напряжения переменного тока на измеряемом конденсаторе, В, не более	0,2
Диапазон измерения электрической ёмкости	0,4 нФ – 2 Ф
Количество поддиапазонов измерения электрической ёмкости	8
Диапазон измерения тангенса угла потерь	0,001 – 5
Пределы допускаемой основной абсолютной погрешности измерения электрической ёмкости, ΔC и тангенса угла потерь, $\Delta tg\delta$	см. табл. 2
Пределы допускаемой абсолютной погрешности измерения электрической ёмкости тангенса угла потерь в рабочих условиях применения в диапазоне температур 10 – 15 °C и 25 – 35 °C	1,5·ΔC 1,5·Δtgδ
Диапазон установки и измерения напряжения поляризации от внутреннего источника, В	0,1 – 69,9
Пределы допускаемой абсолютной погрешности установки напряжения поляризации от внутреннего источника, В	±(0,02·Uπ + 0,1 B)
Пределы допускаемой абсолютной погрешности измерения напряжения поляризации от внутреннего источника, В	±(0,01·Uπ + 0,1 B)
Диапазон установки напряжения поляризации от внешнего источника, В	0,1 - 630
Диапазон измерения и контроля тока утечки	0,01 мкА – 20 мА
Пределы допускаемой абсолютной погрешности разбраковки по току утечки, в единицах поддиапазона измерения	±[Іу доп·(0,04 + U ₀ /Uп) + + 0,01 мкА]
Пределы допускаемой абсолютной погрешности измерения тока утечки, в единицах поддиапазона измерения	$\pm (0.05 \cdot \text{Iy} + 0.05 \text{ мкA} + 2\text{A})$
Диапазон установки времени выдержки конденсатора под напряжением в режиме разбраковки по току утечки, с	5 – 60
Пределы допускаемой относительной погрешности установки времени выдержки конденсатора под напряжением в режиме разбраковки по току утечки, %	±10

где: Іу доп – установленное значение допустимого тока утечки в единицах установленного поддиапазона;

Uo = 0.05 B;

Uп – установленное значение напряжения поляризации, B;

Іу – измеренное значение тока утечки в единицах установленного поддиапазона;

А – единица дискретности.

Таблица 2

Номер	Обозна-	Поддиапазон	Пределы допускаемой	Пределы допускаемой
под-	чение	измерения	основной абсолютной по-	основной абсолютной по-
диапа-	поддиапа-	ёмкости	грешности	грешности
зона	зона		измерения ёмкости ΔC в ед.	измерения тангенса угла
			поддиапазона измерения	потерьΔtgδ
1	200 nF	00,4 – 199,9 nF	$\pm[(0.005+0.01) \cdot \text{tg}) \cdot \text{C} + 3\text{A}]$	$\pm [0.03 \cdot \text{tg}\delta \cdot (1 + \text{tg}\delta) + 3 \cdot 10^{-3}]$
2	2000 nF	100 – 1999 nF		$\pm [0.02 \cdot \text{tg} \delta \cdot (1 + \text{tg} \delta) + 3 \cdot 10^{-3}]$
3	20 μF	1,00 – 19,99 μF		
4	200 μF	10,0 – 199,9 μF	$\pm[(0,005+0,01 \cdot \text{tg}\delta) \cdot \text{C+A}]$	
5	2000 μF	100 – 1999 μF		
6	20 mF	1,00 – 19,99 mF		
7	200 mF	10,0 – 199,9 mF	$\pm[(0,01+0,01\cdot tg\delta)\cdot C+A]$	$\pm [0.03 \cdot \text{tg} \delta \cdot (1 + \text{tg} \delta) + 5 \cdot 10^{-3}]$
8	2000 mF	100 – 1999 mF	$\pm[(0,01+0,01\cdot tg\delta)\cdot C+A]\cdot$	$\pm [0.03 \cdot \text{tg}\delta \cdot (1 + \text{tg}\delta) + 5 \cdot 10^{-3}]$
			·(1+9C/Cĸ)	·(1+9C/C _K)

где: А – единица дискретности;

С – измеренное значение ёмкости в единицах поддиапазона измерения;

Ск – верхний предел поддиапазона измерения ёмкости;

 $tg\delta$ – измеренное значение тангенса угла потерь.

Время непрерывной работы, ч, не менее	16
Потребляемая мощность, В:А, не более	50
Питание прибора:	
 напряжение переменного тока, В 	220±22
– частота, Гц	50±1
Габаритные размеры прибора, мм, не более	484×480×130
Масса, кг, не более	14
Рабочие условия применения:	
– температура окружающего воздуха, °C	от 10 до 35
– относительная влажность при 25 °C, %	80
- атмосферное давление, мм рт.ст.	630 - 800
Наработка на отказ, ч, не менее	4000
Средний срок службы до списания, лет, не менее	8

Знак утверждения типа

наносят на лицевую панель прибора методом сеткографии, на титульный лист Руководства по эксплуатации типографским способом.

Комплектность средства измерений

В комплект поставки вхолят:

Б комплект поставки входят.	
прибор МЦЕ-24AM1 УБМ2.675.054-02 или	
МЦЕ-24АМ2 УБМ2.675.054-01	– 1 шт.;
– жгут измерительный УБМ4.854.343	– 1 шт.;
– заглушка УБМ4.847.004 (МЦЕ-24AM1) или УБМ4.847.005 (МЦЕ-24AM2)	– 1 шт.;
комплект ЗИП УБМ4.060.088	– 1 шт.;
ведомость ЗИП УБМ2.675.054 ЗИ	– 1 экз.;

-1 экз.;

- Руководство по эксплуатации УБМ2.675.054-02 РЭ
- *источник поляризующих напряжений ИТУК-БНП1 УБМ2.645.009-1 1 экз.

Примечание: * Поставляется по отдельному заказу.

Поверка

осуществляется в соответствии с методикой поверки, изложенной в разделе 7 "Методика поверки" УБМ2.675.054-02 РЭ «Прибор для измерения электрической ёмкости и тангенса угла потерь конденсаторов МЦЕ-24АМ. Руководство по эксплуатации», утвержденной ГЦИ СИ ФБУ «Тест-С.-Петербург» 06.11.2014 г.

Перечень основного и вспомогательного поверочного оборудования представлен в табл. 3.

Таблица 3

Наименование, тип основного поверочного	Основные технические характеристики	
оборудования	Предел (диапазон)	Класс точности,
	измерений	погрешность
1	2	3
Мегаомметр М1101М	до 500 МОм	KT 1,0
Секундомер СОСпр-2б-2-010		KT 2
Прибор МО-62	$2 \cdot 10^{-5} - 10^{6} \mathrm{Om}$	±(0,5 – 5) %
Ампервольтметр Ц4311	0,003 – 7,5 A 0,75 – 750 B 45 – 55 Гц	KT 1
Частотомер Ч3-5	0,1 Гц – 300 МГц	$\pm 5.10^{-7}$
Вольтметр В7-53А/1	0 – 1000 B 1 мB – 700 B 20 Γц – 5 кГц	$\begin{array}{cc} U_{=} & \pm (0.04-0.06) \ \% \\ U_{\sim} & \pm (0.5-0.6) \ \% \end{array}$
Мера ёмкости МПЕТ-1А	0,01 мкФ	±0,01 % tg\delta ±5\cdot 10^{-5}
Магазин ёмкости Р5025	100 пФ – 100 мкФ	±0,1 % tgδ ±1·10 ⁻⁴
Магазин ёмкости М1000	100 – 1000 мкФ	±0,05 % (50 Γц) ±0,1 % (100 Γц) tgδ ±5·10 ⁻⁴
Магазин ёмкости М10000	1000 – 10000 мкФ	$\pm 0.1 \% (50 \Gamma \text{H})$ $\pm 0.15 \% (100 \Gamma \text{H})$ $\pm 0.15 \% \pm 1.10^{-3}$
Магазин сопротивлений МСР-60М	0,01 – 10 кОм	KT 0,02
Магазин сопротивлений Р4002	104 – 108 Ом	KT 0,05
Прибор МЦЕ-14АМ	10 нФ – 1 Ф	± 0.002 C, 50 Γ _{II} tgδ $\pm (0.02 \cdot \text{tg}\delta + 3 \cdot 10^{-4})$
Осциллограф АСК-2034	$0-25\ \mathrm{M}\Gamma$ ц, коэфф. отклонения $1-5\ \mathrm{mB/дел}$	погрешность измерения временных интервалов ±0,5 %
Резистор С2-23-2-36 Ом	36 Ом ±0,5 %	
Резистор С2-29В-0,25-100 Ом	100 Ом ±0,5 %, 0,25 Вт	
Конденсатор К50-18 – 6,3 В – 100000 мкФ	100000 мкФ; 6,3 В	
Конденсатор K75-24 $-$ 1000 B $-$ 8 мк $\Phi \pm 5$ %	8 мкФ ±5 %, 1000 В	

Продолжение таблицы 3

1	2	3
Делитель 1/10 (резисторы C2-29B-0,125-9,09 кОм ±0,1 %	Коэффиці	иент деления 1/10
и C2-29B-0,125-1,01 кОм ±0,1 %)		

Сведения о методиках (методах) измерений

Методы измерений приведены в разделе 7 "Методика поверки" УБМ2.675.054-02 РЭ «Прибор для измерения электрической ёмкости и тангенса угла потерь конденсаторов МЦЕ-24АМ. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к приборам для измерения электрической ёмкости и тангенса угла потерь конденсаторов МЦЕ-24АМ

- 1. ГОСТ 8.371-80 «ГСИ. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений электрической ёмкости».
- 2. ГОСТ 8.019-85 «ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений тангенса угла потерь».
- 3. ГОСТ 22261-94 «Средства измерений электрических величин. Общие технические условия».
- 4. ГОСТ 25242-93 «Измерители параметров иммитанса цифровые. Общие технические требования и методы испытаний».
- 5. УБМ2.675.054-02ТУ «Прибор для измерения электрической ёмкости и тангенса угла потерь конденсаторов МЦЕ-24АМ. Технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

выполнение работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

Изготовитель

Открытое акционерное общество «Научно-исследовательский институт «Гириконд» (ОАО «НИИ «Гириконд»)

Юридический и фактический адрес: 194223, г. Санкт-Петербург, ул. Курчатова, д. 10. Тел.: 8 (812) 247-14-50, факс: 8 (812) 552-60-57.

E-mail: a14@giricond.ru.

Испытательный центр

ГЦИ СИ ФБУ «Тест-С.-Петербург»

Адрес: 190103, г. Санкт-Петербург, ул. Курляндская, д. 1.

Тел.: (812) 244-62-28, 244-12-75, факс: (812) 244-10-04.

E-mail: letter@rustest.spb.ru.

Аттестат аккредитации ГЦИ СИ ФБУ «Тест-С.-Петербург» по проведению испытаний средств измерений в целях утверждения типа № 30022-10 от 15.08.2011 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

С.С. Голубев

М.п. «__» _____2015 г.