ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики статические трехфазные переменного тока активной и реактивной энергии MT174

Назначение средства измерений

Счетчики статические трехфазные переменного тока активной и реактивной энергии MT174 (далее – счетчики) предназначены для измерения и регистрации активной и реактивной электрической энергии и времени.

Описание средства измерений

Счетчики предназначены для использования внутри помещений и выпускаются в нескольких исполнениях, отличающихся классами точности.

Исполнения счетчиков отображаются в условном обозначении в виде буквенноцифрового кода, значения позиций которого описаны в таблице 1

Код	MT174	-Dx	Ax	y	Rx	y	Sx2	-Vx2	Lx1	-Mx	Kxy	Z
Номер												
позиции	1	2	3	4	5	6	7	8	9	10	11	12
кода												

Таблица 1 – Возможные значения позиций кода обозначения

Таолиг	да 1 – возможные значения позиции кода обозначения					
Позиция кода	Значение кода					
1	MT174 - Многотарифный счетчик с индикатором максимального значения					
	потребления и профилем нагрузки					
2	D1 - Счетчик непосредственного включения (максимальный ток 85 A)					
	D2 - Счётчик непосредственного включения (максимальный ток 120 A)					
	Т1 - Трансформаторный универсальный счетчик (максимальный ток 6А)					
3	А4 - Класс точности 1 по ГОСТ 31819.21-2012 при измерении активной					
	энергии					
	А5 - Класс точности 2 по ГОСТ 31819.21-2012 при измерении активной					
	энергии					
4	1 - Измерение активной энергии в одном направлении					
	2 - Измерение активной энергии в двух направлениях					
	3 - Измерение абсолютного значения активной энергии					
5	R5 - Класс точности 2 по ГОСТ 31819.23-2012 при измерении реактивной					
	энергии					
	R6 - Класс точности 3 по ГОСТ 31819.23-2012 при измерении реактивной					
	энергии					
6	1 - Измерение реактивной энергии в одном направлении					
	2 - Измерение реактивной энергии в двух направлениях					
	3 - Измерение реактивной энергии в четырех квадрантах					
7	S52 - Вычисление полной энергии как произведение среднеквадратичных					
	значений тока и напряжения с погрешностью не более ± 2%					
	S62 - Вычисление полной энергии как произведение среднеквадратичных					
	значений тока и напряжения с погрешностью не более ± 3%					
8	V12 - Один дискретный вход управления тарифами					
	V22 - Два дискретных входа управления тарифами					

Позиция кода	Значение кода					
9	G12 – один импульсный выход					
	G22 – два импульсных выхода					
	L11 – Один тарифный выход (твердотельное реле)					
	L21 – Два тарифных выхода (твердотельных реле)					
10	М3 – Встроенные часы реального времени с резервным питанием от литиевой					
	батареи					
11	К03 – Цифровые интерфейсы: инфракрасный оптический порт интерфейса ІЕС					
	62056-21 и последовательный интерфейс RS485 IEC 62056-21 (IEC 61107)					
	Mode C					
12	Z – регистрация профиля нагрузки					

Принцип действия счетчиков основан на преобразовании и измерении напряжения сети, а также измерении напряжения, пропорционального входному току, возникающего в воздушных зазорах петель Роговского.

Измерительная схема, преобразующая ток, представляет собой петлю Роговского. Для компенсации влияющих факторов используется вторая петля Роговского. В качестве датчика напряжения используется резистивный делитель напряжения.

Сигналы напряжения от цепей напряжения и схемы преобразования тока преобразуются в цифровой код для дальнейшей обработки в микропроцессоре. Микропроцессор обеспечивает вычисление счетчиком следующих величин:

- активной энергии и мощности;
- реактивной энергии и мощности (по квадрантам);
- полной энергии и мощности;
- мгновенных значений мощности;
- мгновенных значений токов в каждой фазе;
- мгновенных значений фазных напряжений;
- мгновенных значений коэффициентов мощности (по фазам);
- частоты напряжения сети.

Измерения выполняются счётчиками автоматически, просмотр результатов измерений на дисплее возможен как в режиме автоматической прокрутки, так и в ручном режиме. На дисплее также отображаются направление потока энергии, действующий тариф, состояние счетчика и другие параметры.

Результаты измерений отображаются на жидкокристаллическом дисплее и заносятся в регистры счетчиков, содержимое которых может быть передано ПО имеюшимся интерфейсам информационным внешние устройства, ДЛЯ которых обеспечена информационная совместимость со счетчиками.

Для поверки и тестирования счетчика используют светодиодные индикаторы, расположенные на кожухе счетчиков. Частота импульсов, формируемых на индикаторах, пропорциональная измеренным значениям активной и реактивной мощности. Постоянная счетчиков указывается на маркировке, нанесенной на кожухе.

Счетчики имеют встроенные часы реального времени с резервированным питанием от автономного источника. Резервирование питания часов при потере напряжения осуществляется с помощью литиевой батареи.

Часы обеспечивают выполнение следующих функций:

- формирование периодов измерения мощности и профилей нагрузки;
- ведение внутреннего календаря счетчика, который содержит информацию о годе, месяце, дне, дне недели, часе, минуте, секунде и переходе на следующий год;
- формирование меток времени каждого события, состоящих из даты, часа, минуты и секунды;

смену тарифных программ;

Места

фиксацию времени текущих (расчетных) показаний.

Внешний вид счетчиков с указанием мест пломбирования приведен на рисунке 1.

Рисунок 1 – Счетчик электрической энергии МТ174

Программное обеспечение

В счетчиках используется встроенное программное обеспечение. Программное обеспечение выполняет функции вычисления результатов измерений, формирования выходных сигналов, хранения результатов измерений, взаимодействия с внешними по отношению к счетчикам устройствами, защиты результатов измерений и параметров счетчиков от несанкционированных изменений, ведения шкалы времени.

В счетчиках МТ174 все программное является метрологически значимым и поставляется в различных версиях, отличающихся доступными для пользователя функциями,

Идентификационные признаки программного обеспечения счетчиков MT174 приведены в таблице 2.

Таблица 2 – Идентификационные признаки программного обеспечения счетчиков MT174

MT174			
Идентификационные данные (признаки)	Значение		
Идентификационное наименование программного обеспечения	MT174_70D6.d43		
Номер версии (идентификационный номер) программного обеспечения	FW 1.02		
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму CRC16)	70D6		
Идентификационное наименование программного обеспечения	MT174_FDF5.d43		
Номер версии (идентификационный номер) программного обеспечения	FW 1.03		
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму CRC16)	FDF5		
Идентификационное наименование программного обеспечения	MT174_28B4.d43		
Номер версии (идентификационный номер) программного обеспечения	FW 1.04		
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму CRC16)	28B4		
Идентификационное наименование программного обеспечения	MT174_B204.d43		
Номер версии (идентификационный номер) программного обеспечения	FW 1.05		
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму CRC16)	B204		

Идентификационные данные (признаки)	Значение		
Идентификационное наименование программного обеспечения	MT174_391B.d43		
Номер версии (идентификационный номер) программного обеспечения	FW 1.06		
Цифровой идентификатор программного обеспечения (рассчитываемый по алгоритму CRC16)	391B		

Программное обеспечение имеет уровень защиты от непреднамеренных преднамеренных изменений в соответствии с Р 50.2.077-2014 - высокий.

Метрологические и технические характеристики

Пределы основной относительной погрешности при измерении активной электрической энергии в рабочем диапазоне токов и коэффициентов мощности:

- для счетчиков класса точности 1 по ГОСТ 31819.21-2012 ± 1 %;
- для счетчиков класса точности 2 по ГОСТ 31819.21-2012 \pm 2 %.

Пределы основной относительной погрешности при измерении реактивной электрической энергии в рабочем диапазоне токов и коэффициентов мощности:

- для счетчиков класса точности 2 по ГОСТ 31819.23-2012± 2 %;
- для счетчиков класса точности 3 по ГОСТ 31819.23-2012 \pm 3 %.

Пределы основной относительной погрешности при измерении активной и реактивной электрической энергии в рабочем диапазоне токов и коэффициентов мощности при включении с однофазной нагрузкой по ГОСТ 31819.21-2012, ГОСТ 31819.23-2012.

Пределы дополнительных погрешностей от воздействия влияющих величин в зависимости от класса точности счетчиков приведены в таблице 3.

Базовый ток для исполнений с непосредственным включением параметрируется из ряда:5; 10 A.

- для исполнений с максимальным током 6 А10000 имп./кВт⋊ (имп./кварҳі);
- для исполнений с максимальным током 85 А......1000 имп./кВт⋊ (имп./кварҳі);
- для исполнений с максимальным током 120 А......500 имп./кВт⋊ (имп./кварҳі).

Стартовый ток по ГОСТ 31819.21-2012. Номинальное фазное напряжение $U_{\text{ном}}$: 3x230 B.

Номинальная частота: 50 Гц.

Диапазон рабочих частот: от 45 до 55 Γ ц.

Таблица 3 – Пределы дополнительных погрешностей при измерении электрической

энергии от воздействия влияющих величин

энергии от воздействия влияющих величин						
Влияющая величина	Дополнитель	ьные	Дополнительные			
	погрешности		погрешности при измерении			
	измерении аг		реактивной энергии			
	энергии (мог		(мощности) для счётчиков			
	счётчиков кл	асса точности	класса точности			
	1	2	2	3		
Изменение температуры окружающего воздуха	По ГОСТ 3	1819.21-2012	По ГОСТ 31819.23-2012			
Изменение напряжения в	Пределицио	полимтелици	<u> </u> допускаемых поі	тенностей %		
пределах ±20%*	*		±0,5	•		
	±0,5	±0,5		±0,5		
Изменение частоты в пределах	±0,5	$\pm 0,5$	±0,5	$\pm 0,5$		
±10%*						
Влияние обратной	±0,5	±0,5	-	-		
последовательности фаз	<u> </u>	,				
Влияние несимметрии	±0,5	±0,5	_	-		
напряжения	,	,				
Влияние изменения						
вспомогательного напряжения в	±0,05	± 0.05	±0,05	$\pm 0,05$		
пределах ±15%						
Влияние гармоник в цепях тока и	±0,8	±1	_	_		
напряжения						
Влияние нечётных гармоник в	±0,2	±0,2	_	_		
цепи переменного тока						
Влияние субгармоник в цепи	±0,2	±0,2	_	_		
переменного тока	_==,					
Влияние постоянного тока и						
чётных гармоник в цепи	±3	±3	±3	±3		
переменного тока						
Влияние постоянной магнитной						
индукции внешнего	±0,1	±0,1	±0,1	$\pm 0,1$		
происхождения						
Влияние магнитной индукции	±2	±3	±3	±3		
внешнего происхождения 0,5 мТл						
Влияние функционирования	±0,1	±0,1	±0,1	±0,1		
вспомогательных частей				,1		
Влияние радиочастотных	±2	±2	±2	±2		
электромагнитных полей						
Влияние кондуктивных помех,						
наводимых радиочастотными	±0,5	±0,5	±0,5	±0,5		
полями						
Влияние наносекундных	<u>±</u> 4	<u>±</u> 4	<u>±</u> 4	<u>±</u> 4		
импульсных помех						
Влияние колебательных	±2	±2	<u>±2</u>	±2		
затухающих помех				<u></u>		

^{* -} в рабочих диапазонах токов и коэффициентов мощности, для прочих влияющих величин при значениях тока и коэффициента мощности, установленных ГОСТ 31819.21-2012, ГОСТ 31819.23-2012.

Ход часов реального времени в зависимости от температуры	ы окружающего
воздуха (T, °C), не более	$\pm [0,5+0,15(23-T)]$ c/cyt.
Потребляемая мощность:	
по цепям напряжения, активная / полная, не более:	0,8 B _T / 10 B _X A
в цепях тока на фазу не более:	0,16 B×A.
Период регистрации профиля нагрузки	
Глубина хранения профиля нагрузки с периодом регистраци	ии
30 минут не менее	70 суток.
Габаритные размеры, не более:	
Класс защиты	II.
Требования к электромагнитной совместимости	по ГОСТ 31818.11-2012.
Степень защиты корпуса	IP54.
Масса, не более	1 кг.
Средняя наработка на отказ, не менее	1,7×10 ⁶ ч.
Средний срок службы, не менее	20 лет.
Рабочие условия применения:	
 температура окружающего воздуха 	от минус 40 до плюс 70 °C;
 относительная влажность воздуха при температуре 35°C 	С, не более
атмосферное давление,	

Знак утверждения типа

Знак утверждения типа наносится на щиток счетчиков и эксплуатационную документацию.

Комплектность

Комплектность счетчиков электроэнергии МТ174 приведена в таблице 4.

Таблица 4 – Комплектность

Наименование	Количество			
Счетчик электрической энергии МТ174	1			
Счетчик электрической энергии трехфазный МТ174. Паспорт.	1			
Счетчики статические трехфазные переменного тока активной	1*			
и реактивной энергии MT174. Методика поверки				
Примечание:* - допускается поставка одного документа на партию счетчиков				

Поверка

осуществляется по методике поверки 026–30007–14 «Счетчики статические трехфазные переменного тока активной и реактивной энергии МТ174. Методика поверки», утвержденной ФГУП «СНИИМ» в июне 2014 г.

Основное поверочное оборудование: установка для поверки счетчиков электрической энергии УППУ-МЭ 3.1К (Г.р. №39138-08), укомплектованная прибором электроизмерительным эталонным многофункциональным «Энергомонитор 3.1КМ-X-02» (Г.р. №52854-13); тайм-сервер ФГУП «ВНИИФТРИ» (поправка системных часов не более \pm 10 мкс).

Сведения о методиках (методах) измерений

Методика измерений содержится в эксплуатационном документе «Счетчик электрической энергии трехфазный МТ174. Паспорт».

Нормативные и технические документы, устанавливающие требования к счетчикам статическим трехфазным переменного тока активной и реактивной энергии МТ174

- 1. ГОСТ 31818.11-2012 (IEC 62052-11:2003) «Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии».
- 2. ГОСТ 31819.21-2012 (IEC 62053-21:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2».
- 3. ГОСТ 31819.23-2012 (IEC 62053-23:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии».
 - 4. Документация фирмы «Iskraemeco», Словения.

Рекомендации по области применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли.

Заявитель

Закрытое акционерное общество «Искра-РЭС».

Адрес: 119361, г. Москва, ул. Озерная, д.42, тел. +7(495)2762320.

Изготовитель

Фирма «Искраемеко» (Iskraemeco d.d.),

Адрес: Словения, 4000 Крань, Савска лока 4, тел. +3(864)2064000.

Испытательный центр

Государственный центр испытаний средств измерений

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ГЦИ СИФГУП «СНИИМ»).

Адрес: 630004, г. Новосибирск, проспект Димитрова, д. 4, тел. (383)210-08-14, факс (383)2101360.

E-mail: director@sniim.ru

Аттестат аккредитации ГЦИ СИ ФГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № 30007-09 от 12.12.2009 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « » _____2015 г.