ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС

Назначение средства измерений

Настоящее описание типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС (далее АИИС КУЭ) включает в себя описание измерительных каналов, соответствующих точкам измерений № 9, 10.

АИИС КУЭ энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС предназначена для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени отдельными технологическими объектами, сбора, хранения и обработки полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС решает следующие задачи:

- автоматическое выполнение измерений 30-минутных приращений активной и реактивной электроэнергии, мощности на 30-минутных интервалах;
- периодический (1 раз в 30 минут, час, сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени измеренных данных о приращениях электроэнергии с дискретностью учета (30 мин) и данных о состоянии средств измерений;
- автоматическое сохранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений на сервер АИИС КУЭ и автоматизированные рабочие места (APMы);
- предоставление по запросу доступа к результатам измерений, данным о состоянии объектов и средств измерений со стороны сервера организаций—участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка пломб, паролей и т.п.);
- диагностику и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройку параметров АИИС КУЭ;
- автоматическое ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие измерительные трансформаторы тока (ТТ) класса точности 0,2S по ГОСТ 7746-2001, трансформаторы напряжения (ТН) класса точности 0,2 по ГОСТ 1983-2001; счетчики электроэнергии Альфа А1800 класса точности 0,2S по ГОСТ Р 52323-2005 в режиме измерения активной электроэнергии и класса точности 0,5 по ГОСТ Р 52425-2005 в режиме измерения

реактивной электроэнергии, установленные на объектах, указанных в таблице 2, и соединяющие их измерительные цепи;

2-й уровень – информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД) на базе ЭКОМ-3000, каналообразующую аппаратуру и технические средства обеспечения электропитания;

3-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер АИИС КУЭ, автоматизированные рабочие места персонала (АРМ), программное обеспечение (ПО) «Энергосфера», коммуникационное оборудование, технические средства приема-передачи данных (каналообразующая аппаратура) и технические средства обеспечения электропитания.

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин;
 - средняя на интервале времени 30 мин активная (реактивная) электрическая мощность.

Цифровой сигнал с выходов счетчиков по линиям связи поступает на входы УСПД, где осуществляется преобразование унифицированных сигналов в значения измеряемых величин, получение данных, хранение измерительной информации, ее накопление и передача накопленных данных по линиям связи на третий уровень системы (сервер БД).

На верхнем – третьем уровне системы выполняется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов. ИВК обеспечивает автоматизированный сбор и долгосрочное хранение результатов измерений, информации о состоянии средств измерений, расчет потерь электроэнергии от точки измерений до точки поставки, вычисление дополнительных параметров, подготовку справочных и отчетных документов. Передача информации в организации—участники оптового рынка электроэнергии осуществляется от сервера БД, через сеть интернет в виде сообщений электронной почты.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), включающей в себя источник сигналов эталонного времени на базе GPS-приемника, входящего в состав УСПД «ЭКОМ-3000», сервера БД и счетчиков. Время УСПД синхронизировано с временем приемника, сличение ежесекундное, погрешность синхронизации не более $\pm 0,2$ с. Сличение времени сервера БД с временем УСПД, осуществляется каждый час и корректировка времени сервера БД осуществляется при расхождении с временем УСПД ± 3 с. Сличение времени УСПД с временем счетчиков Альфа А1800 выполняется с периодичностью 3 минуты, корректировка времени счетчиков происходит при расхождении со временем УСПД ± 2 с. Погрешность СОЕВ не превышает ± 5 с.

Программное обеспечение

В АИИС КУЭ энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС, используется комплекс программно-технический измерительный (ПТК) «ЭКОМ», Госреестр № 19542-05, представляющий собой совокупность технических устройств

(аппаратной части ПТК) и программного комплекса (ПК) «Энергосфера» в состав которого входит специализированное ПО, идентификационные данные которого указаны в таблице 1. ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных, передаваемых из УСПД ИВКЭ в ИВК по интерфейсу Ethernet, является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера».

Уровень защиты ПО от непреднамеренных и преднамеренных изменений – высокий (в соответствии с Р 50.2.077-2014). Оценка влияния ПО на метрологические характеристики СИ – нет.

Таблица 1. - Идентификационные данные программного обеспечения

	Значение	
Идентификационные данные (признаки)	«ПК Энергосфера»	
Идентификационное наименование ПО	pso_metr.dll	
Номер версии (идентификационный номер) ПО	1.1.1.1	
Цифровой идентификатор ПО	cbeb6f6ca69318bed976e08a2bb7814b	
Алгоритм вычисления цифрового идентификатора	MD5	

Метрологические и технические характеристики

Таблица 2 — Состав измерительных каналов АИИС КУЭ энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС

Наименование объектов и номера точек измерений		Состав измерительных каналов			Вид электро энергии	Метроло- гические харак- теристики ИК		
		TT	ТН	Счетчик	уСПД/ Сервер	Вид элект	Основная пог- решность, %	Погрешность в рабочих усло- виях. %
9	Γ1-1	ТВ-ЭК 15M2D 10000/1 Кл. т. 0,2S	3НОЛ-ЭК-15 М3 15000/√3/100/√3 Кл. т. 0,2	A1802RALQ- P4GB-DW-4 Кл. т. 0,2S/0,5	M-3000 / HP Proliant DL380pGen8 «MS-Windows-2008 г, ПО «Энергосфера»	Актив- ная	±0,5	±1,3
10	Γ1-2	ТВ-ЭК 10М2D 8000/1 Кл. т. 0,2S	EGG20 11500/√3/100/√3 Кл. т. 0,2	A1802RALQ- P4GB-DW-4 Кл. т. 0,2S/0,5	ЭКОМ-3000 DL380 OC «MS-Wi Server, ПО «Э	Реактив- ная	±1,2	±2,6

Примечание

- 1) Характеристики погрешности измерительных каналов (ИК) даны для измерения электроэнергии и средней мощности (получасовая);
- 2) В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
- 3) Нормальные условия:
- параметры сети: напряжение (0,98 1,02) U_{HOM} ; ток (1,0 1,2) I_{HOM} , cosj = 0,9 инд.;
- температура окружающей среды (20 ± 5) °C.
- 4) Рабочие условия:
- параметры сети: напряжение (0.9 1.1) U_{HOM}; (0.02 1.2)·I_{HOM}; cosj от 0.5 инд до 0.8 емк;
- допускаемая температура окружающей среды для измерительных трансформаторов от минус 40 до + 70 °C, для счетчиков от минус 40 до + 65 °C; для УСПД от минус 10 до плюс 50 °C; для сервера от + 15 до + 35 °C;
- 5) Погрешность в рабочих условиях указана для тока $0.02 \cdot I_{HOM}$; $\cos j = 0.8$ инд, температуры окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 15 до плюс $25~^{\circ}\mathrm{C}$;
- 6) Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии Альфа A1800 по ГОСТ Р 52323-2005 в режиме измерения активной электроэнергии и ГОСТ Р 52425-2005 в режиме измерения реактивной электроэнергии;
- 7) Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Замена оформляется актом в установленном на Челябинской ГРЭС порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть;
- 8) В составе измерительных каналов, перечисленных в таблице 2, применяются измерительные компоненты утвержденных типов.

Надежность применяемых в системе компонентов:

- электросчетчики Альфа A1800 среднее время наработки на отказ не менее T=120000 ч, счетчики Альфа A1800 относятся к невосстанавливаемым на месте эксплуатации изделиям, время восстановления учета электроэнергии зависит от наличия резервного счетчика на складе и времени его подключения. При наличии резервного счетчика время, необходимое на замену элемента (демонтаж, монтаж, параметризация) 24 ч;
- УСПД ЭКОМ-3000 параметры надежности: среднее время наработки на отказ не менее T = 75000 ч, среднее время восстановления работоспособности tв = 24 ч;
- сервер HP Proliant коэффициент готовности 0,999, среднее время восстановления работоспособности не более t = 1 ч, среднее время наработки на отказ не менее T = 160165 ч.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии организацию с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:

параметрирования;

пропадания напряжения;

коррекции времени в счетчике;

- журнал УСПД:

параметрирования;

пропадания напряжения; коррекции времени в счетчике и УСПД; пропадание и восстановление связи со счетчиком; выключение и включение УСПД.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:

электросчётчика;

испытательной коробки;

УСПД;

сервера;

- защита на программном уровне информации при хранении, передаче, параметрировании: электросчетчика,

УСПД,

сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- один раз в сутки (функция автоматизирована).

Глубина хранения информации:

- электросчетчики Альфа A1800 тридцатиминутный профиль нагрузки в двух направлениях не менее 200 суток; при отключении питания не менее 3,5 лет;
- УСПД суточные данные о потреблении электроэнергии по каждому каналу учета за сутки не менее 60 суток; сохранение информации при отключении питания не менее 10 лет;
- сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС.

Комплектность средства измерений

Комплектность системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС указана в таблице 3.

Таблица 3 — Комплектность системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС.

Наименования объектов и номера точек измерений		Состав измерительных каналов				
		TT	ТН	Счетчик	УСПД/ Сервер	
9	Γ1-1	ТВ-ЭК 15М2D 10000/1 Кл. т. 0,2S (3 шт.)	3НОЛ-ЭК-15 М3 15000/√3/100/√3 Кл. т. 0,2 (3 шт.)	A1802RALQ- P4GB-DW-4 Кл. т. 0,2S/0,5 (1 шт.)	ЭКОМ-3000 (1 шт.)/ HP Proliant	
10	Γ1-2	ТВ-ЭК 10М2D 8000/1 Кл. т. 0,2S (3 шт.)	EGG20 11500/√3/100/√3 Кл. т. 0,2 (3 шт.)	A1802RALQ- P4GB-DW-4 Кл. т. 0,2S/0,5 (1 шт.)	DL380pGen8 ПО «Энергосфера» (1 шт.)	

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений, а также методика поверки «Система автоматизированная информационно–измерительная коммерческого учета электроэнергии (АИИС КУЭ) энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС. Измерительные каналы. Методика поверки» 55181848.422222.204/3.МП».

Поверка

осуществляется по документу 55181848.422222.204/3.МП «Система автоматизированная информационно—измерительная коммерческого учета электроэнергии (АИИС КУЭ) энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС с Изменением № 1. Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» в октябре 2014 года.

Средства поверки:

- трансформаторов тока по ГОСТ 8.217-2003;
- трансформаторов напряжения по МИ 2925-2005, МИ 2845-2003 и/или по ГОСТ 8.216-2011;
- счетчиков Альфа A1800 по документу «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки». ДЯИМ.411152.018, утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2011 г;
- УСПД ЭКОМ-3000— по документу «Устройство сбора и передачи данных «ЭКОМ-3000». Методика поверки. ПБКМ.421459.03 МП».

Сведения о методиках (методах) измерений

Метод измерений приведен в формуляре на систему автоматизированную информационно–измерительную коммерческого учета электроэнергии (АИИС КУЭ) энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС, № 55181848.422222.204/3 ФО.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) энергоблоков ПГУ-247,5 ст. № 1, 2, 3 ОАО «Фортум» Ордена Ленина Челябинской ГРЭС

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие

технические условия».

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизи-

рованные системы. Автоматизированные системы. Стадии создания».

ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные

положения».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление торговли.

Изготовитель

ООО «Прософт-Системы»

620062 г. Екатеринбург, пр. Ленина д. 95, кв.16 Телефон: (343) 356-51-11, Факс: (343) 310-01-06,

Электронная почта: info@prosoftsystems.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, Москва, ул. Озерная, д.46 Тел./факс: (495) 437 55 77 / 437 56 66; E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

	Ф.В. Булыгин
«»	2015 г.
	« <u> </u>