ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакции, утвержденной приказом Росстандарта № 2205 от 23.10.2017 г.)

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) по объекту «Строительство блоков №14 (первая очередь ГТУ), №15 (вторая очередь ГТУ) на территории Кузнецкой ТЭЦ (ГТЭС «Новокузнецкая»)»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) по объекту «Строительство блоков №14 (первая очередь ГТУ), №15 (вторая очередь ГТУ) на территории Кузнецкой ТЭЦ (ГТЭС «Новокузнецкая»)», предназначена для измерения активной и реактивной электроэнергии.

Описание средства измерений

АИИС КУЭ представляют собой трехуровневую систему с централизованным управлением и распределенной функцией измерения.

1-ый уровень системы включает в себя: измерительные трансформаторы тока (ТТ) класса точности 0,2S и трансформаторы напряжения (ТН) классов точности 0,2, многофункциональные счетчики электрической энергии СЭТ-4ТМ.03М.16, класса точности 0,2S для активной электроэнергии и 0,5 для реактивной электроэнергии. Вторичные электрические цепи, резисторы.

2-ой уровень представляет собой - информационно-вычислительный комплекс электроустановки и состоит из устройства сбора и передачи данных «ЭКОМ-3000» (УСПД) предназначенного для сбора, обработки, хранения и передачи данных, полученных от счетчиков электрической энергии, а также коммуникационного оборудования, каналообразующей аппаратуры, цифровых и оптических линий связи.

3-ий уровень системы - информационно-вычислительный комплекс (ИВК), включающий в себя измерительный программно-технический комплекс (ПТК) ЭКОМ-3000, аппаратуру связи, сервер базы данных АИИС КУЭ, автоматизированные рабочие места (АРМ) и программное обеспечение (ПО) - Энергосфера, Windows, MS SQL Server, Office MS и др.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям поступают на измерительные входы счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре вычисляются мгновенные значения активной и полной мощности, которые усредняются по периоду основной частоты сигналов. Реактивная мощность вычисляется по средним за период основной частоты значениям полной и активной мощности. УСПД по каналам связи считывает измеренные значения в цифровом виде со счетчиков электрической энергии и осуществляет их перевод в именованные физические величины с учетом постоянной счетчика, а также умножение на коэффициенты трансформации ТТ и ТН. Далее измеренные величины от УСПД передаются на уровень ИВК, где ведется учет потребления электроэнергии и мощности по временным интервалам, формирование и хранение поступающей информации, оформление справочных и отчетных документов и информационное взаимодействие организациями-участниками оптового рынка электроэнергии. Коммуникационное оборудование и аппаратура связи АИИС КУЭ позволяют осуществлять санкционированный доступ и считывание результатов измерений и служебной информации со счетчиков электроэнергии через систему паролей.

АИИС КУЭ оснащена системой обеспечения единого времени СОЕВ, которая охватывает уровень счетчиков электрической энергии, УСПД и ИВК.

В УСПД встроен модуль GPS-приемника, от которого синхронизируется его таймер (часы), погрешность хода часов не превышает 0,2 с в сутки.

Часы УСПД сличаются с часами ПТК ЭКОМ-3000 каждые 30 минут, коррекция часов ПТК производится при расхождении с часами УСПД, превышающем ± 1 с. Сличение часов счётчиков с часами УСПД осуществляется каждые 30 минут, коррекция производится один раз в сутки при достижении расхождения с часами УСПД, более ± 2 с. Абсолютная погрешность системного времени не превышает ± 5 с.

Программное обеспечение

ПО «Энергосфера» предназначено для организации специализированных серверов сбора информации.

В функции сервера входит:

- обеспечение сбора данных ИК АИИС КУЭ ИВК «Энергосфера»;
- подготовка данных для отображения на автоматизированных рабочих местах (APM) диспетчеров или операторов комплекса;
 - отслеживание состояния системы и регистрация возникающих в ней событий;
 - автоматическое формирование и рассылка отчетов для внешних систем;
 - обеспечение СОЕВ.

ПО «Энергосфера» ведет сбор информации с устройств (счетчики, устройства сбора и передачи данных (УСПД), контроллеры и т.п.) через секунду передачи данных, которую в общем случае можно представить в виде каналов связи (выделенные линии, коммутируемые телефонные линии, GSM - каналы и пр.). После сбора, данные помещают в базу данных (БД). Идентификационные данные ПО «Энергосфера» приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	pso_metr.dll
Номер версии (идентификационный номер) ПО	1.1.1.1
Цифровой идентификатор ПО	cbeb6f6ca69318bed976e08a2bb7814b (для 32-разрядного сервера опроса), 6c38ccdd09ca8f92d6f96ac33dl57a0e (для 64-разрядного сервера опроса)
Алгоритм вычисления цифрового идентификатора ПО	MD5

Предел допускаемой дополнительной абсолютной погрешности, получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3 и 4, нормированы с учетом ПО.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты каналов передачи данных с помощью контрольных сумм, что соответствует уровню «высокий» в соответствии с Р 50.2.77-2014.

Метрологические и технические характеристики

Технические характеристики ЙК АЙИС КУЭ приведены в табл. 2, которая содержит перечень и состав ИК АИИС КУЭ с указанием наименования присоединений и измерительных компонентов.

Таблица 2 – Перечень и состав ИК 1-го и 2-го уровней АИИС КУЭ ГТЭС «Новокузнецкая»

		31	Состав ИИК				
№ ИК Наименование присоединения	Счетчик электроэнергии	Трансформатор тока (ТТ)	Трансформатор напряжения (ТН)	УСПД	ИВК	Вид электроэнергии	
1	2	3	4	5	6	7	8
1	ГТЭС Новокузнецкая, КРУЭ 220 кВ, КВЛ 220 кВ ГТЭС Новокузнецкая - НКАЗ	СЭТ-4ТМ.03М.16 Кт = 0,2S/0,5 Зав. № 0812101084 Рег. № 36697-08	TΓ-220* KT = 0,2S Ki = 1200/1 3ab. № 115 3ab. № 116 3ab. № 117 Per. № 50644-12	SVR-20 KT = 0,2 Ku = 220000:√3/100:√3 3ab. № 130001201 3ab. № 130001202 3ab. № 130001203 Per. № 51365-12	ЭКОМ-3000, Зав. №	HP ProLiant	Активная, реактивная
2	ГТЭС Новокузнецкая, КРУЭ 220 кВ, КВЛ 220 кВ ГТЭС Новокузнецкая - Ферросплавная №1	CЭT-4TM.03M.16 KT = 0,2S/0,5 3ab. № 0812102445 Per. № 36697-08	TГ-220* KT = 0,2S Ki = 1200/1 Зав. № 124 Зав. № 125 Зав. № 126 Рег. № 50644-12	SVR-20 KT = 0,2 Ku = 220000:√3/100:√3 3ab. № 130001216 3ab. № 130001217 3ab. № 130001218 Per. № 51365-12	08135058 Per. № 17049-09	DL320e Gen8 3aв. № ILOCZ132800VX	Активная, реактивная

1	2	3	4	5	6	7	8	
3	ГТЭС Новокузнецкая, КРУЭ 220 кВ, КВЛ 220 кВ ГТЭС Новокузнецкая - Ферросплавная №2	CЭT-4TM.03M.16 KT = 0,2S/0,5 3ab. № 0812102480 Per. № 36697-08	TΓ-220* KT = 0,2S Ki = 1200/1 3ab. № 139 3ab. № 140 3ab. № 141 Per. № 50644-12	SVR-20 KT = 0,2 Ku = 220000:√3/100:√3 3ab. № 130001207 3ab. № 130001208 3ab. № 130001209 Per. № 51365-12		HP ProLiant DL320e Gen8		Активная, реактивная
4	14ГТ	СЭТ-4ТМ.03М.16 Кт = 0,2S/0,5 Зав. № 0812102501 Рег. № 36697-08	TΓ-220* KT = 0,2S Ki = 1200/1 3aв. № 127 3aв. № 128 3aв. № 129 Рег. № 50644-12	SVR-20 KT = 0,2 Ku = 220000:√3/100:√3 3ab. № 130001204 3ab. № 130001205 3ab. № 130001206 Per. № 51365-12	ЭКОМ-3000, Зав. № 08135058		Активная, реактивная	
5	15ГТ	СЭТ-4ТМ.03М.16 Кт = 0,2S/0,5 Зав. № 0812102508 Рег. № 36697-08	TΓ-220* KT = 0,2S Ki = 1200/1 3ab. № 136 3ab. № 137 3ab. № 138 Per. № 50644-12	SVR-20 KT = 0,2 Ku = 220000:√3/100:√3 3ab. № 130001213 3ab. № 130001214 3ab. № 130001215 Per. № 51365-12	Per. № 17049-09	3ab. № ILOCZ132800VX	Активная, реактивная	
6	РТСН	СЭТ-4ТМ.03М.16 Кт = 0,2S/0,5 Зав. № 0812120344 Рег. № 36697-08	TΓ-220* KT = 0,2S Ki = 1200/1 3ab. № 112 3ab. № 113 3ab. № 114 Per. № 50644-12	SVR-20 KT = 0,2 Ku = 220000:√3/100:√3 3ab. № 130001219 3ab. № 130001220 3ab. № 130001221 Per. № 51365-12			Активная, реактивная	

1	2	3	4	5	6	7	8
7	ГТЭС Новокузнецкая; ТГ-14	СЭТ-4ТМ.03М.16 Кт = 0,2S/0,5 Зав. № 0812120123 Рег. № 36697-08	AON-F KT = 0,2S Ki = 10000/1 3ab. № 13/469820104 3ab. № 13/469820105 3ab. № 13/469820106 Per. № 51363-12	3HOЛ-ЭК-15 KT = 0,2 Ku = 15750:√3/100:√3 3ab. № 30523 3ab. № 30524 3ab. № 30522 Per. № 47583-11			Активная, реактивная
8	ГТЭС Новокузнецкая; ТГ-15	CЭT-4TM.03M.16 KT = 0,2S/0,5 3ab. № 0812102403 Per. № 36697-08	AON-F KT = 0,2S Ki = 10000/1 3ab. № 13/469820101 3ab. № 13/469820102 3ab. № 13/469820103 Per. № 51363-12	3HOЛ-ЭК-15 KT = 0,2 Ku = 15750:√3/100:√3 3ab. № 30521 3ab. № 30525 3ab. № 30526 Per. № 47583-11	ЭКОМ-3000, Зав. № 08135058 Рег. № 17049-09	HP ProLiant DL320e Gen8 3aв. № ILOCZ132800VX	Активная, реактивная
9	TCH-14	СЭТ-4ТМ.03М.16 Кт = 0,2S/0,5 Зав. № 0812122621 Рег. № 36697-08	JR 0,5 KT = 0,2S Ki = 3000/1 3ab. № 3/13/0037 3ab. № 3/13/0038 3ab. № 3/13/0033 Per. № 35406-12	Y24G2/HT KT = 0,2 Ku = 15750:√3/100:√3 3ab. № 508788 3ab. № 508789 3ab. № 508790 Per. № 43223-09			Активная, реактивная

1	2	3	4	5	6	7	8
10	TCH-15	СЭТ-4ТМ.03М.16 Кт = 0,2S/0,5 Зав. № 0812123770 Рег. № 36697-08	JR0,5 KT = 0,2S Ki = 3000/1 3ab. № 3/13/0034 3ab. № 3/13/0036 3ab. № 3/13/0035 Per. № 35406-12	Y24G2/HT KT = 0,2 Ku = 15750:√3/100:√3 3ab. № 508771 3ab. № 508772 3ab. № 508773 Per. № 43223-09	ЭКОМ-3000, Зав. № 08135058	HP ProLiant DL320e Gen8	Активная, реактивная
57	ГТЭС Новокузнецкая, КРУЭ 220 кВ, КВЛ 220 кВ ГТЭС Новокузнецкая - Еланская	СЭТ-4ТМ.03М.16 Кт = 0,2S/0,5 Зав. № 0812120351 Рег. № 36697-08	$T\Gamma$ -220* $K_T = 0,2S$ Ki = 1200/1 3aB. № 172 3aB. № 173 3aB. № 174 Per. № 50644-12	SVR-20 KT = 0,2 Ku = 220000:√3/100:√3 3ab. № 130001210 3ab. № 130001211 3ab. № 130001212 Per. № 51365-12	Рег. № 17049-09	Зав. № ILOCZ132800VX	Активная, реактивная

Метрологические характеристики ИИК при измерении электроэнергии в рабочих условиях эксплуатации приведены в табл. 3,4.

Таблица 3 - Пределы допускаемой относительной погрешности измерений активной электроэнергии для рабочих условий измерений с использованием АИИС КУЭ.

№ ИК	Cos φ		$\begin{cases} \delta_{5\%P}, \% \\ W_{PI5\%} \leq W_{P} \leq W_{PI20\%} \end{cases}$	$\begin{cases} \delta_{20\%P}, \% \\ W_{PI5\%} \leq W_{P} \leq W_{PI20\%} \end{cases}$	$\begin{array}{c} \delta_{100\%P}, \% \\ W_{PI100\%}{\leq} W_{P} \\ {\leq} W_{PI120\%} \end{array}$
	1,0	±1,0	±0,6	±0,5	±0,5
1–10,	0,866	±1,2	±0,9	±0,7	±0,7
57	0,8	±1,3	±0,9	±0,7	±0,7
	0,5	±2,1	±1,3	±1,0	±1,0

Таблица 4 - Пределы допускаемой относительной погрешности измерений реактивной электроэнергии для рабочих условий измерений с использованием АИИС КУЭ.

№ИК	Sin φ/ Cos φ		$\begin{cases} \delta_{5\%Q}, \% \\ W_{QI5\%} \leq W_{Q} \leq W_{QI20\%} \end{cases}$	$\begin{cases} \delta_{20\%Q}, \% \\ W_{QI5\%} \leq W_{Q} \leq W_{PI20\%} \end{cases}$	$\begin{array}{c} \delta_{100\%Q}, \% \\ W_{QI100\%} \leq W_{Q} \\ \leq W_{QI120\%} \end{array}$
	0,5/ 0,866	±2,3	±1,7	±1,3	±1,3
1–10, 57	0,6/ 0,8	±2,1	±1,6	±1,2	±1,2
	0,866/ 0,5	±1,7	±1,4	±1,1	±1,1

где δ [%] – предел допустимой относительной погрешности ИК активной (P) и реактивной (Q) электроэнергии при значении тока в сети относительно номинального $I_{\text{ном}}$ 2% ($\delta_{2\%P}$, $\delta_{2\%Q}$), 5% ($\delta_{5\%P}$, $\delta_{5\%Q}$), 20% ($\delta_{20\%P}$, $\delta_{20\%Q}$), 100% ($\delta_{100\%P}$, $\delta_{100\%Q}$) и 120% ($\delta_{120\%P}$, $\delta_{120\%Q}$);

 $W_{\rm изм.}$ — 3начение приращения активной и реактивной электроэнергии за 30-минутный интервал времени в диапазоне измерений с границами 2% ($W_{\rm PI2\%}, W_{\rm QI2\%}$), 5% ($W_{\rm PI5\%}, W_{\rm QI5\%}$), 20% ($W_{\rm PI20\%}, W_{\rm QI20\%}$), 100% ($W_{\rm PI100\%}, W_{\rm OI100\%}$), 120% ($W_{\rm PI120\%}, W_{\rm OI120\%}$).

Примечания:

- 1. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.);
- 2. В качестве характеристик погрешности ИК установлены пределы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95;
- 3. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, СОЕВ на однотипный утвержденного типа.

Основные технические характеристики ИК приведены в таблице 5.

Таблица 5 – Основные технические характеристики ИК

Габлица 5 – Основные технические характеристики ИК	
Наименование характеристики	Значение
Количество измерительных каналов	11
Нормальные условия:	
параметры сети:	
- напряжение, % от U _{ном}	от 98 до 102
- tok, $\%$ ot I_{hom}	от 100 до 120
- Частота, Гц	от 49,85 до 50,15
- коэффициент мощности соsф	0,87
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 85 до 110
- Tok, $\%$ ot I_{hom}	от 2 до 120
- частота, Гц	от 49 до 51
- коэффициент мощности соsф	от 0,5 $_{\rm инд.}$ до 0,5 $_{\rm емк.}$
- температура окружающей среды для ТТ и ТН, °С	от -10 до +50
- температура окружающей среды в месте расположения	от -10 до +70
электросчетчиков, °C	
Надежность применяемых в АИИС КУЭ компонентов:	
Электросчетчики СЭТ-4ТМ.03М.16:	
- среднее время наработки на отказ, ч, не менее:	100000
- среднее время восстановления работоспособности, ч	168
COEB:	
- среднее время наработки на отказ, ч, не менее:	35000
- среднее время восстановления работоспособности, ч	168
УСПД ЭКОМ-3000:	
- среднее время наработки на отказ, ч, не менее:	50000
- среднее время восстановления работоспособности, ч	1
ТТ и ТН:	
- среднее время наработки на отказ, ч, не менее:	300000
- среднее время восстановления работоспособности, ч	168
Глубина хранения информации	
Электросчетчики:	
- тридцатиминутный профиль нагрузки в двух	
направлениях, сутки, не менее	113,7
- при отключении питания, лет, не менее	10
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электроэнергии по каждому каналу и электроэнергии	
потребленной за месяц по каждому каналу, суток, не менее	45
- при отключении питания, лет, не менее	5
ИВК:	
- хранение результатов измерений и информации о	
состоянии средств измерений, лет, не менее	3,5

Надежность системных решений:

- резервирование электрического питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журнале события счетчика фиксируются факты:

- факты связи со счетчиком, приведшие к каким-либо изменениям данных и конфигурации;
- факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство;
- формирование обобщенного события (или по каждому факту) по результатам автоматической самодиагностики;
- отсутствие напряжения по каждой фазе с фиксацией времени пропадания и восстановления напряжения;
- перерывы питания электросчетчика с фиксацией времени пропадания и восстановления.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчетчиков;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательных коробок;
 - сервера;
- защита информации на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 6.

Таблица 6 – Комплектность АИИС КУЭ

Наименование	Тип	Количество, шт
1	2	3
Трансформатор тока	ΤΓ-220	21
Трансформатор тока	AON-F	6

продолжение тавлицы в		
1	2	3
Трансформатор тока	JR 0,5	6
Трансформатор напряжения	SVR-20	21
Трансформатор напряжения	3НОЛ-ЭК-15	6
Трансформатор напряжения	Y24G2/HT	6
Электросчетчик	CЭT-4TM.03M	11
УСПД	ЭКОМ-3000	1
Коммутатор ЛВС	EDS 208A	1
Преобразователь интерфейсов	NPort 6250-M-SC	2
Сервер базы данных	HP ProLiant DL320e Gen8	1
	Конфигуратор СЭТ-4ТМ	1
Программное обеспечение	УСПД ЭКОМ-3000	1
	«Энергосфера»	1
Ведомость эксплуатационной документации	14N11-10UMA-746-ED.BЭ	1
Инструкция по эксплуатации КТС	14N11 -10UMA-746-ED.ИЭ	1
Паспорт-формуляр	14N11-10UMA-746-ED.ФО	1
Массив входных данных	14N11-10UMA-746-ED.B6	1
Состав выходных данных	14N11-10UMA-746-ED.B8	1
Технологическая инструкция	14N11-10UMA-746-ED.И2	1
Руководство пользователя	14N11-10UMA-746-ED.И3	1
Инструкция по формированию и ведению базы данных	14N11-10UMA-746-ED.И4	1
Методика поверки с изменением №1	18-18/03 MΠ	1
Массив входных данных Состав выходных данных Технологическая инструкция Руководство пользователя Инструкция по формированию и ведению базы данных	14N11-10UMA-746-ED.B6 14N11-10UMA-746-ED.B8 14N11-10UMA-746-ED.И2 14N11-10UMA-746-ED.И3 14N11-10UMA-746-ED.И4	1 1 1 1 1

Поверка

осуществляется по документу 18-18/03 МП «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) по объекту «Строительство блоков №14 (первая очередь ГТУ), №15 (вторая очередь ГТУ) на территории Кузнецкой ТЭЦ (ГТЭС «Новокузнецкая»). Методика поверки» с изменением №1, утвержденному руководителем ГЦИ СИ ФБУ «Красноярский ЦСМ» 02.06.2017 г.

Основные средства поверки – по МП на измерительные компоненты:

- измерительные трансформаторов тока по ГОСТ 8.217-2003;
- измерительные трансформаторов напряжения по ГОСТ 8.216-88;
- **-** СЭТ-4ТМ.03М.16 по методике поверки ИЛГШ.411152.124 РЭ1;
- УСПД «ЭКОМ 3000» по методике поверки МП26-262-99.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих – кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ГТЭС «Новокузнецкая».

Методика аттестована ФБУ «Красноярский ЦСМ», свидетельство об аттестации №07.01.00291.009-2014 от 29.09.2014 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) по объекту «Строительство блоков №14 (первая очередь ГТУ), №15 (вторая очередь ГТУ) на территории Кузнецкой ТЭЦ (ГТЭС «Новокузнецкая»)»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Техпроминжиниринг»

(ООО «Техпроминжиниринг»)

ИНН 2465209432

Адрес: 660127, г. Красноярск, ул. Ястынская д. 19А, помещение 216 Телефон/факс: (391) 206-86-63, (391) 206-86-64, (391) 206-86-65

E-mail: info@tpi-sib.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Красноярском крае»

Адрес: 660093, г. Красноярск, ул. Вавилова, д. 1А

Телефон: (391) 236-30-80 Факс: (391) 236-12-94 Web-сайт: <u>www.krascsm.ru</u> E-mail: krascsm@krascsm.ru

Аттестат аккредитации ГЦИ СИ ФБУ «Красноярский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № 30073-10 от 20.12.2010 г.

В части вносимых изменений:

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Кемеровской области»

Адрес: 650991, Кемеровская область, г. Кемерово, ул. Дворцовая, д. 2

Телефон: (384-2) 36-43-89 Факс: (384-2) 75-88-66 Web-сайт: www.kmrcsm.ru E-mail: kemcsm@ kmrcsm.ru

Аттестат аккредитации ФБУ «Кемеровский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № 30063-12 от 13.11.2012 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « » 2019 г.