ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакциях, утвержденных приказами Росстандарта № 1871 от 06.09.2018 г., № 1207 от 30.05.2019 г.)

Счетчики электрической энергии трехфазные многофункциональные СЕЗО8

Назначение средства измерений

Счетчики электрической энергии трехфазные многофункциональные CE308 (далее по тексту — счетчики) предназначены для измерения активной и реактивной электрической энергии, параметров силы тока, напряжения, активной и реактивной мощности, частоты сети, угла сдвига фаз, коэффициентов мощности в трехфазных цепях переменного тока, организации многотарифного учета электроэнергии, и контроля качества электроэнергии.

Описание средства измерений

Счетчики предназначены для внутренней или наружной установки в зависимости от исполнения корпуса.

Исполнения счетчиков для внутренней установки, применяются внутри помещений, в местах, имеющих дополнительную защиту от влияния окружающей среды, в жилых и в общественных зданиях, в бытовом и в промышленном секторе.

Исполнения счетчиков для наружной установки, могут использоваться без дополнительной защиты от окружающей среды, и устанавливаются на опору линии электропередачи или на фасаде здания.

Счетчики могут использоваться автономно, или в составе автоматизированных информационно-измерительных систем коммерческого учета электроэнергии АИИС КУЭ (АСКУЭ).

Принцип действия счетчиков основан на измерении мгновенных значений входных сигналов тока и напряжения аналого-цифровым преобразователем, с последующим вычислением среднеквадратических значений токов и напряжений, активной, реактивной мощности и энергии, углов сдвига фазы, коэффициента мощности и частоты. Алгоритм вычисления реактивной мощности (энергии) – по первой гармонике.

Счетчики имеют в своем составе микроконтроллер, энергонезависимую память данных и встроенные часы реального времени, позволяющие вести учет активной и реактивной электроэнергии нарастающим итогом в прямом или в прямом и обратном направлении по тарифным зонам суток, три датчика тока (шунт или трансформатор тока), испытательное выходное устройство, оптический порт для локального съема показаний и интерфейсы для съема показаний системами автоматизированного учета потребленной электроэнергии, жидкокристаллический индикатор для просмотра измеряемой информации, клавиатуру с одной пломбируемой кнопкой для защиты от несанкционированного перепрограммирования, индикаторы функционирования.

Счетчики могут вести измерения активной электроэнергии в диапазонах сдвига фаз между напряжением и током следующим образом:

```
ј =от 90^{0} до 0^{0} - 1й квадрант (A1) соѕј = от 0 до 1 - (инд.) ј =от 180^{0} до 90^{0} - 2й квадрант (A2) соѕј = от минус 1 до 0 - (емк.) ј =от 270^{0} до 180^{0} - 3й квадрант (A3) соѕј = от 0 до минус 1 - (инд.) ј =от 0^{0} до минус 90^{0} - 4й квадрант (A4) соѕј = от 0 до 0 - (емк.)
```

Примечание: A1, A2, A3, A4 – условные наименования активной составляющей вектора полной энергии первого, второго, третьего и четвертого квадрантов соответственно.

условными наименованиями:

«А+» - прямое направление, расход, потребление, импорт, **®** "от шин"

«А-» - обратное направление, приход, отдача, экспорт, Ǭ "к шинам"

В зависимости от настройки, накопление активной энергии выполняется по следующим алгоритмам:

1. «Двунаправленный учет»

A += A1 + A4

A = A2 + A3

2. «Однонаправленный учет» (накопление по модулю)

A += A1 + A2 + A3 + A4

A=0

Счетчики могут вести измерения реактивной электроэнергии в диапазонах сдвига фаз между напряжением и током следующим образом:

 $\mathbf{j} = \text{от } 0^0$ до 90^0 - 1й квадрант (R1) $\sin \mathbf{j} = \text{от } 0$ до 1 - (инд.)

j =от 90^{0} до $180^{0} - 2$ й квадрант (R2) $\sin j =$ от 1 до 0 -(емк.)

j =от 180^0 до $270^0 - 3$ й квадрант (R3) $\sin j =$ от 0 до минус 1 -(инд.)

 $\mathbf{j} = \text{от } 270^{0} \text{ до } 0^{0} - 4\mathbf{й} \text{ квадрант } (\mathbf{R4}) \text{ sin} \mathbf{j} = \text{от минус 1 до 0 - (емк.)}$

Примечание: R1,R2,R3,R4 – условные наименования реактивной составляющей вектора полной энергии первого, второго, третьего и четвертого квадрантов соответственно.

B счетчиках предусмотрены два настраиваемых канала учета реактивной энергии с условными наименованиями R+ и R-. B зависимости от настройки, накопление реактивной энергии выполняется по следующим алгоритмам:

1. «По направлению Q»

R += R1 + R2

R=R3+R4

2. «По характеру нагрузки»

R + = R1 + R3

R=R2+R4

3. «По направлению Р»

R + = R1 + R4

R=R2+R3

4. «Суммарная по 4м квадрантам»

R + = R1 + R2 + R3 + R4

R=0

Счетчики ведут измерение и учет времени и даты с возможностью задания автоматического перехода на летнее/зимнее время.

Счетчики ведут измерение и учет потребленной или потребленной и отпущенной активной и реактивной (R+ и R-) электрической энергии суммарно и по тарифам указанным в активных тарифных программах в соответствии с сезонными недельными расписаниями и суточными программами смены тарифных зон (тарифными программами). Сезонное недельное расписание может предусматривать различные суточные тарифные программы для различных дней недели. В счетчике также предусматривается назначение тарифных программ для исключительных (особых) дней, а также, в зависимости от исполнения, назначение тарифов или тарифных программ по заданным событиям.

Счетчики в зависимости от исполнения обеспечивают учет, фиксацию и хранение, измерение, индикацию на жидкокристаллическом индикаторе и выдачу по интерфейсам:

- количества только потребленной или потребленной и отпущенной активной и реактивной (R+ и R-) электроэнергии нарастающим итогом суммарно и раздельно по тарифам;
- количества только потребленной или потребленной и отпущенной активной и реактивной (R+ и R-) электроэнергии нарастающим итогом суммарно по каждой фазе (для исполнений Z);

- архивов показаний учитываемых видов энергии, зафиксированных при смене суток, месяцев, лет в соответствии с таблицей 1.

Таблица 1 – Глубина хранения архивов показаний учитываемых видов энергии,

зафиксированных при смене суток, месяцев, лет

Момент фиксации	Глубина хранения, индикации и выдачи по	
	интерфейсу	
при смене суток	не менее 128	
при смене месяцев или расчетных периодов	не менее 36	
при смене лет (только для исполнений Z)	не менее 10	

- графиков (профилей) активных и реактивных мощностей (потребления и отпуска), а также для исполнения Z напряжений и частоты усредненных на заданном интервале времени от 1 до 60 минут за период не менее 128 суток (при тридцатиминутном интервале).
- баланса счета потребителя, остаточного оплаченной электроэнергии в кВт-ч или в денежных единицах (для исполнений Z);
- текущая величина суточного потребления сверх кредита в кВт-ч или в денежных единицах (для исполнений Z);
- количества только потребленной или потребленной и отпущенной активной электроэнергии нарастающим итогом суммарно и раздельно по тарифам, количества потребленной отпущенной реактивной электроэнергии нарастающим итогом, зафиксированных по команде по интерфейсу или по заданным событиям, а также архива этих показаний (не менее 19) (для исполнений Z);
 - активных мощностей, усредненных на заданном интервале усреднения;
- архивов максимальных значений активной потребленной мощности, усредненной на заданном интервале усреднения, зафиксированных за месяц (не менее 13), с датой и временем их достижения;
 - для исполнения Т количества импульсов, учтенных по каждому импульсному входу;
 - среднеквадратических значений фазных напряжений по каждой фазе:
 - среднеквадратических значений тока в каждой фазе;
 - активной мощности суммарно и по каждой фазе;
 - реактивной мощности суммарно и по каждой фазе;
 - полной мощности суммарно и по каждой фазе;
 - для исполнения Z полной мощности суммарно и по каждой фазе;
 - коэффициента мощности суммарно и по каждой фазе;
 - частоты измерительной сети;
- для исполнения U с учетом пределов допускаемой погрешности при измерении параметров качества электрической энергии в соответствии с классом «S» характеристики процесса измерений ГОСТ 30804.4.30-2013, указанных в таблице 13:
 - прерывания напряжения;
 - глубины последнего и не менее 11 предыдущих провалов напряжения;
 - длительности последнего и не менее 11 предыдущих провалов напряжения;
- последнего и не менее 11 предыдущих максимальных значений напряжения при перенапряжении;
 - длительности последнего и не менее 11 предыдущих перенапряжений;
 - отрицательное и положительное отклонения напряжения электропитания;
 - отклонение частоты.

Примечание: измерение показателей качества электроэнергии выполняется с классом характеристик процесса измерений по ГОСТ 30804.4.30-2013 на основе несинхронных с сетью и всемирным координированным временем UTC измерениях среднеквадратических значений напряжения.

- оценка соответствия качества электроэнергии нормам в соответствии с ГОСТ 32144-2013 последнего и не менее 20 предыдущих недельных периодов оценки качества электроэнергии. Перечень показателей для которых выполняется оценка соответствия нормам приведен в таблице 13.

В качестве основного интервала времени используемого при объединении результатов измерений показателей качества электроэнергии – используется интервал кратный 20 мс времени счетчика, несинхронизированный с периодом основного тона сигнала напряжения.

Дополнительно счетчики обеспечивают индикацию:

- действующего тарифа;
- даты и времени;
- стоимости электроэнергии по тарифам в денежных единицах (для исполнений Z);
- допустимой величины кредита, лимита суточного потребления сверх кредита, в кВт·ч или в денежных единицах (для исполнений Z);
- OBIS кода отображаемой информации в соответствии с IEC 62056-6-1:2013 (для исполнения Z);
 - заводского номера;
 - версии ПО и контрольной суммы метрологически значимой части ПО.

Счетчики в зависимости от исполнения обеспечивают возможность задания следующих параметров:

- сетевой адрес (идентификатор) счетчика;
- текущего времени и даты;
- величины суточной коррекции часов;
- разрешения перехода на летнее/зимнее время;
- даты, времени перехода на летнее/зимнее время;
- суточной тарифной программы;
- сезонных недельных расписаний и дат начала сезонов;
- дат исключительных (особых) дней;
- паролей для доступа по интерфейсу;
- скорости обмена по интерфейсу:
- лимитов по потреблению энергии (мощности) для срабатывания реле;
- количества оплаченной электроэнергии;
- стоимости электроэнергии по тарифам в денежных единицах (для исполнений Z);
- допустимой величины кредита, лимита суточного потребления сверх кредита, в кВт·ч или в денежных единицах (для исполнений Z);
- нижнего и верхнего порогов отклонения напряжений, а также для исполнения Z тока и частоты.

В счетчиках в зависимости от исполнения предусмотрена функция реле управления нагрузкой потребителя (исполнение Q) и (или) реле сигнализации (исполнение S). Для срабатывания реле могут быть выбраны следующие условия:

- по превышению лимита энергии или для исполнения Z по расходованию оплаченной электроэнергии, с учетом электроэнергии, допустимой к использованию в кредит;
 - по превышению лимита мощности;
 - по уровню напряжения;
 - по прямому управлению командой через интерфейс;
 - по другим событиям в зависимости от заданных настроек.

Счетчики обеспечивают фиксацию в журналах с сохранением даты и времени следующих событий: корректировок времени, изменений настроек счетчика, результатов автоматической самодиагностики работы, фактов вскрытий клеммой крышки и корпуса, результатов самодиагностики, отклонений параметров сети и для исполнения Z отклонений показателей качества электроэнергии.

Счетчики исполнения F обеспечивают фиксацию воздействий магнитом.

Счетчики имеют электрические испытательные выходы (телеметрические выходы), гальванически изолированные от входных измерительных цепей.

Счетчики имеют оптические испытательные выходы (индикаторы работы).

Счетчики исполнения Т имеют телеметрические входы, гальванически изолированные от входных измерительных цепей.

Счетчики исполнения L имеют подсветку жидкокристаллического индикатора.

Счетчики исполнения D поставляются с дополнительным индикаторным устройством, осуществляющим обмен информацией со счетчикам по радиоинтерфейсу или PLC.

Счетчики исполнения J имеют вход для подключения внешнего резервного источника питания, для обеспечения съема показаний по интерфейсам при отсутствии напряжений во входных измерительных цепях.

Обмен информацией с внешними устройствами обработки данных осуществляется через оптический порт и один из интерфейсов, в зависимости от исполнения счетчика.

Обмен информацией по оптическому порту осуществляется с помощью оптической головки, соответствующей ГОСТ IEC 61107-2011.

Протокол обмена по оптическому порту и интерфейсу, в зависимости от исполнения счетчика соответствует стандарту IEC 62056 (DLMS/COSEM) «Обмен данными при считывании показаний счетчиков, тарификации и управления нагрузкой» или DLP, или ГОСТ IEC 61107-2011 «Обмен данными при считывании показаний счетчиков, тарификации и управления нагрузкой. Прямой локальный обмен данными», SMP, Modbus.

Обслуживание счетчиков производится с помощью технологического программного обеспечения «Admin Tools».

Структура условного обозначения приведена на рисунке 1.

Фото общего вида счетчиков с указанием схемы пломбировки от несанкционированного доступа приведены на рисунке 2, 3, 4, 5, 6.

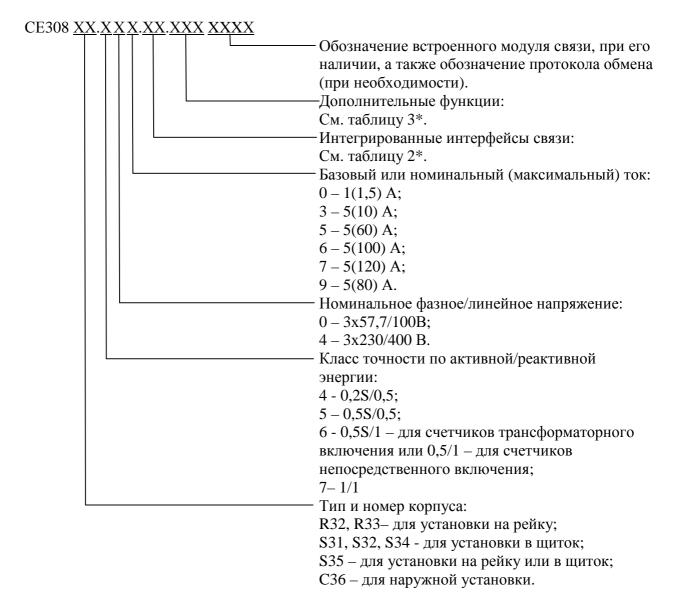


Рисунок 1 - Структура условного обозначения счетчиков

Примечание - * Количество символов определяется наличием дополнительных программно-аппаратных опций в соответствии с таблицей 2 и 3.

Таблица 2 – Перечень интерфейсов

№ п/п	Обозначение	Интерфейс	
1	О	Оптический порт	
2	I	Irda (инфракрасный)	
3	A	RS485	
4	Е	RS232	
5	В	MBUS	
6	P	PLC	
7	R1	Радиоинтерфейс со встроенной антенной	
8	R2	Радиоинтерфейс с внешней антенной	
9	R3	Радиоинтерфейс с возможность переключения на работу с	
		внутренней или внешней антенной	
10	G	GSM	
11	U	USB	
12	C	Картоприемник	
13	N	Ethernet	
14	W	WiFi	
15	K	Клавиатура	

Таблица 3 – Перечень дополнительных функций

№ п/п	Обозначение	Дополнительная функция
1	Q	Реле управления нагрузкой потребителя
2	S	Реле сигнализации
3	Y	2 направления учета
4	D	Внешний дисплей
5	U	Параметры качества электрической сети
6	V	Электронные пломбы
7	J	Возможность подключения резервного источника питания
8	L	Подсветка жидкокристаллического индикатора
9	T	Импульсные входы
10	X	С расширенным диапазоном входных измеряемых сигналов
11	F	Датчик магнитного поля
12	N	Внешнее питание интерфейса
13	Z	Расширенный набор контрольных и расчетных показателей

Перечни литер обозначающих исполнения модулей связи и дополнительных функций могут быть расширены производителем. Описание вновь введенных литер приведено в эксплуатационной документации на счетчики и на сайте производителя. Дополнительные литеры могут быть введены только для функциональности, не влияющей на метрологические характеристики счетчика.

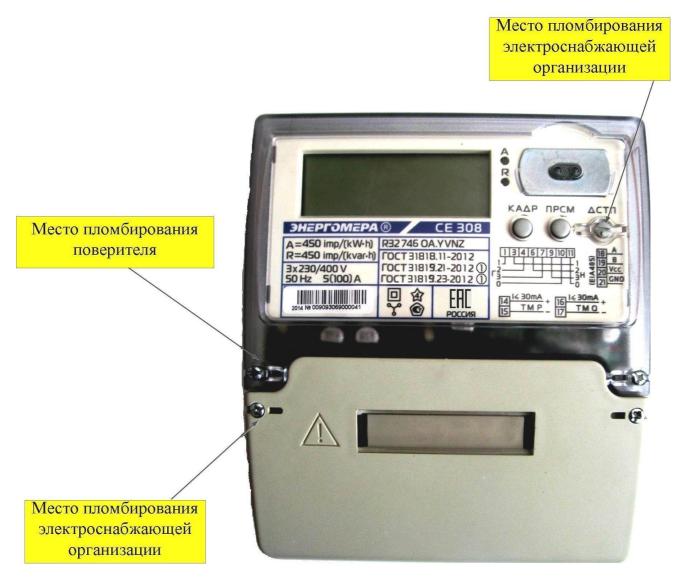


Рисунок 2 – Общий вид счетчика CE308 R32

Рисунок 3 – Общий вид счетчика CE308 R33*

Рисунок 4 – Общий вид счетчика CE308 S31*

Рисунок 5 – Общий вид счетчика CE308 S34*

Рисунок 6 – Общий вид счетчика CE308 S35*

Примечание: *- Надписи « 10^3 », « 10^6 », «P+», «P-», «Q+», «Q-», Егг являются вспомогательными и предназначены для облегчения понимания маркеров состояния возникающих на индикаторе. Допускается отсутствие вспомогательных надписей.

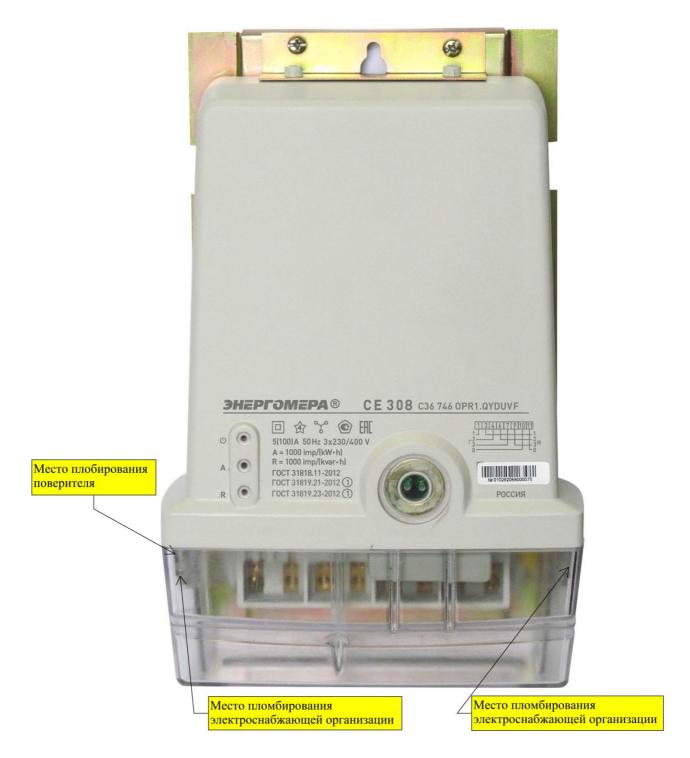


Рисунок 7 – Общий вид счетчика СЕ308 С36

Рисунок 8 – Общий вид счетчика CE308 S32

Рисунок 9 – Общий вид устройства считывания счетчиков СЕ901

Программное обеспечение

Идентификационные данные программного обеспечения счетчиков электрической энергии трехфазных многофункциональных СЕЗО8, указаны в таблице 4.

T	_			4
Iа	OЛ	ш	пa	4

т аолица ч				
Наименование программного обеспечения	Идентифика- ционное наименование программного обеспечения	Номер версии (идентифика- ционный номер) программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
3080_1.hex	3080	1	37A1886C	CRC32
3081_1.hex	3081	1	76D1837B	CRC32
3082_1.hex	3082	1	142AA7D5	CRC32
3083_1.hex	3083	1	F57A354D	CRC32
3084_1.hex	3084	1	6A31E694	CRC32
3085_1.hex	3085	1	23D7AC72	CRC32

По своей структуре ПО счетчика разделено на метрологически значимую и метрологически незначимую части, имеет контрольную сумму метрологически значимой части и записывается в устройство на стадии его производства.

Влияние программного продукта на точность показаний счетчиков находится в границах, обеспечивающих метрологические характеристики, указанные в таблице 6. Диапазон представления, длительность хранения и дискретность результатов измерений соответствуют нормированной точности счетчика.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений средний в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Метрологические и технические характеристики счетчика указаны в таблицах 5 и 6.

Таблица 5 – Метрологические характеристики

Таблица 5 – Метрологические характеристики		
Наименование характеристики	Значение	
Класс точности по активной энергии:		
по ГОСТ 31819.22-2012	0,2S; 0,5S; 0,5*	
по ГОСТ 31819.21-2012	1	
Класс точности по реактивной энергии по		
ГОСТ 31819.23-2012	0,5**; 1	
Диапазон входных сигналов		
сила тока, А	от $0.01I_{\rm H}$ до $I_{\rm Makc}$; от $0.02I_{\rm H}$ до $I_{\rm Makc}$;	
	от $0{,}05I_{6}$ до $I_{ m make}$	
напряжение, В:		
для исполнения X, XZ	от 0,6 до 1,9 $U_{\scriptscriptstyle { m HOM}}$	
для остальных исполнений	от 0,6 $(0,7)^{***}$ до 1,2 $U_{\scriptscriptstyle { m HOM}}$	
коэффициент активной мощности	от 0,8(емк) до 1,0 до 0,5(инд)	
коэффициент реактивной мощности	от 0,25(емк) до 1,0 до 0,25(инд)	
Номинальный или базовый ток, А		
для трансформаторного включения	1 или 5	
для непосредственного включения	5	
Максимальный ток, А		
для трансформаторного включения	1,5 или 10	
для непосредственного включения	60; 80; 100 или 120	
Номинальное фазное/линейное напряжение, В	3×57,7/100 или 3×230/400	
Частота измерительной сети, Гц	от 47,5 до 52,5 или от 57,5 до 62,5	
Диапазон рабочих температур окружающего		
воздуха, °С	от -40 до +70	
Диапазон значений постоянной счетчика, имп./(кВт-ч)		
(имп./(квар·ч))	от 350 до 8000	
Стартовый ток (чувствительность)	см. таблицу 12	
Пределы основной абсолютной погрешности часов,		
с/сутки	±0,5	
Дополнительная погрешность хода часов при	,	
нормальной температуре и при отключенном питании,		
с/сутки, не более		
для исполнений с Z	$\pm 0,5$	
для исполнений без Z	±1	
Пределы дополнительной температурной погрешности		
часов, с/(°С·сутки), не более		
в диапазоне от -10 до +45 °C	± 0,15	
в диапазоне от -40 до -10 °C и от +45 до +70 °C	±0,2	
Приманация * кнага таниасти 0.5 на актирнай знарти	V THE OVERTURED CE209 OFFICERORS	

Примечание: * - класс точности 0,5 по активной энергии для счетчиков CE308 определяется исходя из номенклатуры метрологических характеристик, указанных в ГОСТ 31819.22-2012. В виду отсутствия в указанном стандарте класса точности 0,5, пределы погрешностей при измерении активной энергии для данного типа счетчиков не превышают значений аналогичных погрешностей для счетчиков класса точности 0,5S по ГОСТ 31819.22-2012, но с нижним значением диапазона измерения ±5% Іб.

*** - для исполнений с номинальным напряжением 57,7 В).

^{** -} класс точности 0,5 по реактивной энергии для счетчиков СЕ308 определяется исходя из номенклатуры метрологических характеристик, указанных в таблицах 8 и 9.

Таблица 6 – Основные технические характеристики

1 аолица 6 – Основные технические характеристики	
Наименование характеристики	Значение
Полная мощность, потребляемая каждой цепью тока,	
(В∙А), не более	
для исполнений с Q при базовом токе	0,3
для остальных исполнений при номинальном (базовом)	
токе	0,05
Полная (активная) мощность (без учета потребления модулей	
связи), потребляемая каждой цепью напряжения при	
номинальном значении напряжения, В. А (Вт), не более	9 (0,8)
1	7 (0,0)
1 1	3
номинальном значении напряжения, Вт, не более	3
Количество десятичных знаков индикатора, не менее	8
Длительность хранения информации при отключении	
питания, лет, не менее	30
Длительность учета времени и календаря при	
отключенном питании, лет, не менее	10
Срок службы элемента питания, лет, не менее	10
Число тарифов, не менее	
для исполнения Z	8
для остальных исполнений	4
Число временных зон тарифной программы в сутках	от 1 до 12
Глубина хранения графиков (профилей), значений,	6144 (при интервале усреднения
не менее	30 мин. – 128 суток)
Количество графиков (профилей), не менее	_
для исполнения Z	6
для остальных исполнений	2
Интервалы усреднения значений графиков (профилей),	
мин	от 1 до 60
Допустимое коммутируемое напряжение на контактах реле	
сигнализации (исполнения S), B, не менее	265
Допустимое значение коммутируемого тока на контактах	
реле сигнализации (исполнения S), А, не менее	1
Количество электрических испытательных выходов с	
параметрами по ГОСТ 31819.21-2012 (телеметрических	
выходов)	до 2
Количество оптических испытательных выходов с	до 2
	2
параметрами по ГОСТ 31818.11-2012	<u></u>
Количество электрических импульсных входов (для	
исполнения Т), каждый из которых предназначен для счета	
нарастающим итогом количества импульсов, поступающих	
от внешних устройств с электрическими испытательными	
выходами по ГОСТ 31819.21-2012 (ГОСТ 31819.22-2012),	
не менее	2
Скорость обмена по интерфейсам в зависимости от	
используемого канала связи, бит/с	от 300 до 115200
Скорость обмена через оптический порт, бит/с	от 300 до 9600
Масса счетчика, кг, не более	· ·
для CE308 R32; R33	1,0
	1,0
ппя СЕЗО8 СЗ6: \$32	2.0
для CE308 C36; S32 для CE308 S31; S34; S35	2,0 3,0

Продолжение таблицы 6

Наименование характеристики	Значение
Габаритные размеры (длина; ширина; высота),	
мм, не более	
для CE308 R32	170; 143; 52
для CE308 R33	152; 143; 73
для CE308 S31	215; 175; 72
для CE308 S34	280; 175; 85
для CE308 S35	235; 172,3; 85
для исполнения С36	280; 190; 86
для исполнения S32	277,5; 173,0; 89,0
Средняя наработка на отказ, ч, не менее	220 000
Средний срок службы до первого	
капитального ремонта счетчиков, лет, не менее	30

Пределы допускаемых значений основной относительной погрешности при измерении активной энергии и активной мощности d_P , при трехфазном, симметричном напряжении и трехфазном, симметричном токе не должны превышать значений, указанных в таблице 7.

Таблица 7 — Пределы допускаемых значений основной относительной погрешности при измерении активной энергии и активной мощности при трехфазном, симметричном

напряжении и трехфазном, симметричном токе

напряжении и трехфазном, симметричном токе						
Значение тока для счетчиков		cos j	Пределы допускаемой основной			
			погрешности при измерении			
с непосредственным	включаемых через		активной энергии и мощности,			
включением	трансформатор		%, для счет	чиков клас	ca	
			точности			
			0,5S; 0,5	1	0,2S	
$0.05 I_6 \le I < 0.10 I_6$	$0.01 I_{\text{H}} \le I < 0.05 I_{\text{H}}$	1,0	± 1,0		± 0,4	
$0.10~I_{\rm d} \leq I \leq I_{\rm makc}$	$0.05 I_{\text{H}} \leq I \leq I_{\text{Makc}}$	1,0	± 0,5		± 0,2	
$0.10 I_{0} \le I < 0.20 I_{0}$	$0.02 I_{\text{H}} \le I < 0.10 I_{\text{H}}$	0,5 (инд)	± 1,0		± 0,5	
$0.10 1_6 \leq 1 < 0.20 1_6$	$0.02 I_{\rm H} \le 1 < 0.10 I_{\rm H}$	0,8 (емк)	± 1,0			
$0.20 \mathrm{I_{\tilde{0}}} \leq \mathrm{I} \leq \mathrm{I}_{\mathrm{Makc}}$	$0.10 I_{\text{H}} \leq I \leq I_{\text{Makc}}$	0,5 (инд)	+ 0.6		± 0,3	
$0.20 I_{\tilde{0}} \leq I \leq I_{\text{Makc}}$	$0.10 I_{\rm H} \leq I \leq I_{\rm Makc}$	0,8 (емк)	± 0,6			
$0.05 I_6 \le I < 0.10 I_6$	$0.02 I_{\text{H}} \le I < 0.05 I_{\text{H}}$	1.0		± 1,5		
$0.10~I_{\rm d} \le I \le I_{\rm makc}$	$0.05 I_{\text{H}} \leq I \leq I_{\text{Makc}}$	1,0		± 1,0		
$0.10 I_{0} \le I < 0.20 I_{0}$	$0.05 I_{\rm H} \le I < 0.10 I_{\rm H}$	0,5 (инд)		± 1,5		
$0.10 1_6 \ge 1 < 0.20 1_6$	$0.03 I_{\rm H} \ge 1 < 0.10 I_{\rm H}$	0,8 (емк)	_	$\pm 1,3$	_	
	0.10.7	0,5 (инд)		4.0		
$0,20~I_{\delta} \leq I \leq I_{\text{макс}}$	$0.10 I_{\text{H}} \leq I \leq I_{\text{Makc}}$	0,8 (емк)	1	± 1,0		
		ĺ	ĺ			

Пределы допускаемых значений основной относительной погрешности при измерении реактивной энергии и реактивной мощности d_Q при трехфазном симметричном напряжении и трехфазном симметричном токе не должны превышать значений, указанных в таблице 8.

Таблица 8 – Пределы допускаемых значений основной относительной погрешности при измерении реактивной энергии и активной мощности при трехфазном, симметричном

напряжении и трехфазном, симметричном токе

Значение тока для счетчиков		sin j	Пределы допускаемой основной		
		(при	погрешности при измерении		
		индуктивн	реактивной энергии и мощности,		
		ой и	%, для счетчиков класса точност		
с непосредственным	включаемых через	емкостной	0,5	1	
включением	трансформатор	нагрузке)			
	$0.01 I_{\text{H}} \le I < 0.05 I_{\text{H}}$	1,0	±1,0		
_	$0.05 I_{\text{H}} \leq I \leq I_{\text{Makc}}$	1,0	±0,5		
	$0.02 I_{\text{H}} \le I < 0.10 I_{\text{H}}$	0,5	±1,0	_	
	$0.10~\mathrm{I_H} \leq \mathrm{I} \leq \mathrm{I_{MAKC}}$		±0,6		
	$0.10 I_{\text{H}} \leq I \leq I_{\text{Makc}}$	$0 I_{\rm H} \le I \le I_{\rm Makc}$ 0,25			
$0.05 I_6 \le I < 0.10 I_6$	$0.02 I_{\text{H}} \le I < 0.05 I_{\text{H}}$	1,0		±1,5	
$0.10~I_{\text{d}} \leq I \leq I_{\text{make}}$	$0.05 I_{\text{H}} \leq I \leq I_{\text{Makc}}$	1,0		±1,0	
$0,10 \ I_{\delta} \le I < 0,20 \ I_{\delta}$	$0.05 I_{\text{H}} \le I < 0.10 I_{\text{H}}$	0.5		±1,5	
$0.20~I_{\textrm{d}} \leq I \leq I_{\textrm{makc}}$	$0.10~\mathrm{I_H} \leq \mathrm{I} \leq \mathrm{I_{Makc}}$	0,5		±1,0	
$0,20~I_{\delta} \leq I \leq I_{\text{макс}}$	$0.10~I_{\scriptscriptstyle H} \leq I \leq I_{\scriptscriptstyle Makc}$	0,25		±1,5	

Пределы допускаемых значений дополнительной погрешности при измерении реактивной энергии и реактивной мощности $\Delta_{\mathcal{Q}}$ в условиях влияющих величин не должны превышать значений, указанных в таблице 9.

Таблица 9 – Пределы допускаемых значений дополнительной погрешности при измерении

реактивной энергии и реактивной мощности в условиях влияющих величин

Влияющая величина Изменение температуры окружающего воздуха	Значение тока при симметричной нагрузке, А $0.05~I_{\text{HoM}} \leq I \leq I_{\text{макс}}$ $0.1~I_{\text{HoM}} \leq I \leq I_{\text{макс}}$	Коэффициент мощности 1,0 0,5 инд.	Средний температурный коэффициент, %/К ±0,03 ±0,05
	9,7 7HOM = 7 = 7Marc	, in	Пределы дополнительной погрешности, %
Постоянная магнитная индукция внешнего происхождения Магнитная индукция внешнего происхождения			±2,0 ±1,0
0,5 мТл Радиочастотные электромагнитные поля Кондуктивные помехи наводимые радиочастотными полями Наносекундные импульсные помехи Устойчивость к колебательным затухающим помехам	${ m I}_{ m HOM}$	1,0	±2,0

Продолжение таблица 9

Влияющая величина	Значение тока при симметричной нагрузке, А	Коэффициент мощности	Пределы дополнительной погрешности, %
Изменение частоты сети в диапазонах от 47,5 до 49 Гц и от 51 до 52,5 Гц	$\begin{array}{c} 0.01 \ I_{\text{hom}} \leq I \leq I_{\text{makc}} \\ 0.05 \ I_{\tilde{0}} \leq I \leq I_{\text{makc}} \end{array}$	от 0,25 до 1 от -1 до -0,25 (при индуктивной или емкостной нагрузке)	±3,0

Пределы допускаемых значений основной относительной погрешности при измерении полной мощности d_S при трехфазном симметричном напряжении и трехфазном симметричном токе не должны превышать значений, указанных в таблице 10.

Таблица 10 — Пределы допускаемых значений основной относительной погрешности при измерении полной мощности при трехфазном симметричном напряжении и трехфазном

симметричном токе

Значение тока для счетчиков		sin j	Пределы допускаемой основной	
		(при	погрешности при измерении	
		индуктивн	полной мощности, %, для	
		ой и	счетчиков класса точности	
с непосредственным	включаемых через	емкостной	0,28	1
включением	трансформатор	нагрузке)	0,5S	
	$0.01 I_{\text{H}} \le I < 0.05 I_{\text{H}}$	1,0	±1,0	
_	$0.05 I_{\text{H}} \leq I \leq I_{\text{Makc}}$		±0,5	
	$0.02 I_{\text{H}} \le I < 0.10 I_{\text{H}}$	0,5	±1,0	
	$0.10~\mathrm{I_H} \leq \mathrm{I} \leq \mathrm{I_{Makc}}$		±0,6	
	$0.10 I_{\scriptscriptstyle H} \le I \le I_{\scriptscriptstyle Makc}$	0,25	±1,0	
$0.05 I_6 \le I < 0.10 I_6$	$0.02 I_{\text{H}} \le I < 0.05 I_{\text{H}}$	1,0		±1,5
$0.10~I_{6} \le I \le I_{\text{Makc}}$	$0.05 I_{\text{H}} \leq I \leq I_{\text{Makc}}$	1,0		±1,0
$0,10 \ I_{\delta} \le I < 0,20 \ I_{\delta}$	$0.05 I_{\scriptscriptstyle H} \le I < 0.10 I_{\scriptscriptstyle H}$	0.5	_	±1,5
$0.20~I_{\tilde{0}} \leq I \leq I_{\text{makc}}$	$0.10~\mathrm{I_H} \leq \mathrm{I} \leq \mathrm{I_{Makc}}$	0,5		±1,0
$0.20~I_{\tilde{0}} \leq I \leq I_{\text{makc}}$	$0.10 I_{\text{H}} \leq I \leq I_{\text{макс}}$	0,25		±1,5

Пределы допускаемых значений основной относительной погрешности при измерении среднеквадратических значений силы тока d_I не должны превышать значений, указанных в таблице 11.

Таблица 11 - пределы допускаемых значений основной относительной погрешности при

измерении среднеквадратических значений силы тока

Значение тока для счетчиков		Пределы	допуска	емой основ	вной
		погрешности	при измер	ении тока d _I , %,	для
		счетчиков	класса	точности	ПО
		активной/реактивной			
с непосредственным	включаемых через	0,2\$/0,5;0,5	5S/0,5;	1/1	
включением	трансформатор	0,5S/1; 0	,5/1		
$0,05 I_6 $ £ I £ I_{make}	0,05 I _{HOM} £ I £ I _{MAKC}	±1,0		±2,0	

Пределы допускаемой дополнительной погрешности при измерении среднеквадратических значений силы тока и мощности вызванной воздействием магнитной индукции внешнего происхождения 0,5 мТл не должны превышать величины, рассчитанной по формуле:

$$X = \frac{1,9}{0,15 + 0.8(Iusm/Ihom)}, \%,$$

где

Х - расчетная величина

 $I_{\mbox{\tiny ИЗМ}}$ - измеренное значение силы тока

 $I_{\text{ном}}$ - номинальный ток.

Пределы допускаемых значений основной относительной погрешности при измерении среднеквадратических значений напряжений d_U не должны превышать значений, указанных в таблице 12.

Таблица 12 — Пределы допускаемых значений основной относительной погрешности при измерении среднеквадратических значений напряжений

измерении ереднеквадрати неских эна нении наприжении						
	Пределы	допускаемой	основной	погрешности	при	
Значение напряжения	измерении	п напряжения d_U ,	%, для счетч	ников класса точі	ности	
	0,2S	/0,5;0,5S/0,5		1/1		
	0,5	5S/1; 0,5/1				
$0.6~U_{\text{hom}}$ £ U £ $1.9~U_{\text{hom}}$ $-$						
для исполнения Х						
от 0,6 $\left(0,7\right)^{*}$ до 1,2 $U_{\text{ном}}$ –	±0,5					
для остальных исполнений						
Примечание: *- для исполнений с номинальным напряжением 57,7 В						

Пределы допускаемых значений основной абсолютной погрешности при измерении углов сдвига фазы между основными гармониками напряжений и токов не должны превышать $\pm 1^{\circ}$ в диапазоне от минус 180 до плюс 180° для счётчиков всех классов точности при величине тока от $0.05~I_{\text{ном}}$ до $I_{\text{макс}}$ или от $0.05~I_{\text{б}}$ до $I_{\text{макс}}$ и в диапазоне напряжений указанном в таблице 5.

Пределы допускаемой дополнительной погрешности при измерении углов сдвига фазы между основными гармониками напряжений и токов вызванной воздействием четных и нечетных гармоник и субгармоник в цепях тока и напряжения согласно п. 8.2.2 ГОСТ 31819.21-2012 и субгармоник в цепях тока согласно п. 8.2.2 ГОСТ 31819.22-2012 не должны превышать $\pm 30^{\circ}$.

Пределы допускаемых значений абсолютной погрешности при измерении частоты напряжения сети не должны превышать $\pm\,0.01~\Gamma$ ц (для исполнения Z) или $\pm\,0.1~\Gamma$ ц (для исполнения без Z) в диапазоне от 47,5 до 52,5 Γ ц или от 57,5 до 62,5 Γ ц для счётчиков всех классов точности.

Средний температурный коэффициент при измерении активной энергии, активной мощности, реактивной энергии, реактивной мощности не должен превышать пределов, установленных в таблице 13, при измерении напряжений, токов не должен превышать пределов, установленных в таблице 14.

Таблица 13 – Средний температурный коэффициент при измерении активной энергии, активной мощности, реактивной энергии, реактивной мощности

. •		cosj,	Средний тем	пературный	коэффициент
Значение тока для счетчиков		sin j	при измерени	ии активной	и реактивной
			энергии и	мощности,	%/К, для
			счетчиков класса точности		
с непосредственным	включаемых через		0,5S/0,5	1/1	0,2\$/0,5
включением	трансформатор		0.5S/1; 0.5/1		
$0.05I_{\rm f} \leq I \leq I_{\rm makc}$	$0.05I_{\text{HOM}} \leq I \leq I_{\text{Makc}}$	1,0	$\pm 0,03$	$\pm 0,05$	± 0,01
$0.10I_{\rm f} \leq I \leq I_{\rm makc}$	$0.10I_{\text{HOM}} \leq I \leq I_{\text{Makc}}$	0,5 (инд,	± 0,05	± 0,07	± 0,02
		емк.*)			
Примечание: * - при измерении реактивной энергии, мощности.					

Таблица 14 – Средний температурный коэффициент при измерении напряжений, токов

тиолици тт среднии	таолица 14 средний температурный коэффициент при измерении наприжении, токов				
Значение тока для счетчиков		Средний температурный к измерении токов, %/К, для			
		точности	e let inkob kilacea		
с непосредственным	включаемых через	0,2S/0,5; 0,5S/0,5	1/1		
включением	трансформатор	0,5S/1; 0,5/1			
$0.05I_{\text{d}} \leq I \leq I_{\text{макс}}$	$0.05I_{\text{Hom}} \leq I \leq I_{\text{Makc}}$	± 0,03	± 0,05		
		Средний температурный коэффициент при			
Значение напряжения		измерении напряжений, %/1	К, для счетчиков		
-		класса точности			
		0,2\$/0,5;0,5\$/0,5; 0,5\$/1; 0,5/1	1/1		
0,6 U _{ном} £ U £ 1,9 U _{ном} – для исполнения X					
от $0.6 (0.7)^*$ до $1.2 \text{ U}_{\text{ном}}$ – для остальных		± 0,03	$\pm 0,05$		
исполнений					
Примечание: *- для исполнений с номинальным напряжением 57,7 В.					

Счетчики должны начать и продолжать регистрировать показания электрической энергии при симметричных значениях тока, указанных в таблице 15 для активной и реактивной энергии при коэффициенте мощности равном 1.

Таблица 15 – Стартовый ток (чувствительность)

Включение счетчика	Класс точности счетчика по активной/реактивной			
	энергии			
	0,2\$/0,5; 0,5\$/0,5	0,5\$/1; 0,5/1	1/1	
непосредственное	_	$0,002 I_{6}$	$0,002 I_{6}$	
через трансформаторы тока	$0,001 I_{\text{HOM}}$	$0,001 I_{\text{HOM}}$	$0,002 I_{\text{HOM}}$	

Пределы допускаемой погрешности при измерении показателей качества электроэнергии указаны в таблице 16.

Таблица 16 – Пределы допускаемой погрешности при измерении показателей качества электроэнергии

электроэнергии		
	Диапазон	Пределы допускаемых
Наименование характеристики	измерений	основных погрешностей
	(показаний)	измерений
Отрицательное отклонение напряжения		
электропитания $\delta { m U}_{(-)}, \% ***$		
для исполнений 57,7В	от 0 до 30	
для остальных исполнений	от Одо 40	±0,5*
Положительное отклонение напряжения		
электропитания $\delta { m U}_{(+)}, \% ***$		
для исполнений X, XZ	от 0 до 90	
для остальных исполнений	от 0 до 20	±0,5*
Глубина провала напряжения, %		
для исполнений 57,7 В	от 0 до 30	±0,5*
для остальных исполнений	от 0 до 40	
Длительность прерывания напряжения, с	от 1 до 3⋅109	±2****
Максимальное значение напряжения при		
перенапряжении, В		
для исполнений X, XZ	от 0 до 437	
для остальных исполнений	от 0 до 276	$\pm 0.5\%$ $\mathrm{U}_{\scriptscriptstyle \mathrm{HOM}}$ *
Длительность перенапряжения Δt_n , с	от 2 до 60	± 2****
Длительность провала напряжения ∆tп, с	от 2 до 60	± 2****
Отклонение частоты Δf, Гц***	от -2,5 до +2,5	
для исполнений Z		±0,01**
для остальных исполнений		$\pm 0,1$
TT		

Примечание:

- *- пределы допускаемых основных погрешностей при измерении параметров качества электроэнергии, нормированы исходя из пределов допускаемой основной погрешности при измерении напряжения указанных в таблице 12;
- **- пределы допускаемой основной погрешности при измерении отклонения частоты, нормированы исходя из пределов допускаемых значений абсолютной погрешности при измерении частоты напряжения сети;
- *** параметры, для которых выполняется оценка соответствия нормам по ГОСТ 32144-2013;
 **** пределы допускаемых основных погрешностей при измерении параметров качества
 электроэнергии, нормированы исходя из пределов допускаемой погрешности хода часов.

Знак утверждения типа

наносится на панель счетчиков офсетной печатью (или другим способом, не ухудшающим качества), на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 17 – Комплектность счетчиков

Наименование	Обозначение	Количество
Счетчик электрической энергии трехфазный		
многофункциональный СЕЗО8 (одно из исполнений)	-	1
Индикаторное устройство CE901 (для исполнений D)	-	1
Руководство по эксплуатации	САНТ.411152.107 РЭ	1
Формуляр	САНТ.411152.107 ФО	1
Методика поверки и (поставляется по требованию	САНТ.411152.107 Д1	
потребителя)	с изменением № 3	1

Поверка

осуществляется по документу САНТ.411152.107 Д1 с изменением № 3 «Счетчики электрической энергии трехфазные многофункциональные СЕ308. Методика поверки», утвержденному ФГУП «ВНИИМС» 15.02.2019 г.

Основные средства поверки:

- установка для поверки счетчиков электрической энергии СУ201-3-0,05-К-X-X-X-1 с эталонным ваттметром-счетчиком СЕ603КС-0,05-120, укомплектованная трансформаторами тока гальванической развязки ТТГР 100/100 (регистрационный номер в Федеральном информационном фонде 37901-14);
- секундомер электронный Интеграл С-01 (регистрационный номер в Федеральном информационном фонде 44154-10).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на винт, расположенный на лицевой панели корпуса счетчика, давлением пломбира на стальную или пластиковую пломбу, а также в формуляр счетчика в виде оттиска и/или в свидетельство.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к счетчикам электрической энергии трехфазным многофункциональным СЕЗ08

ГОСТ 31819.22-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0.2S и 0.5S

ГОСТ 31819.21-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2

ГОСТ 31818.11-2012 Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии

ГОСТ 31819.23-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии

ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения

ГОСТ 30804.4.30-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии

ГОСТ IEC 61107-2011 Обмен данными при считывании показаний счетчиков, тарификации и управления нагрузкой. Прямой локальный обмен данными

ТУ 4228-104-78189955-2014 Счетчики электрической энергии трехфазные многофункциональные CE308. Технические условия

Изготовитель

Акционерное общество «Электротехнические заводы «Энергомера»

(АО «Энергомера») ИНН 2635133470

Адрес: 355029, г. Ставрополь, ул. Ленина, д. 415

Телефон: 8 (8652) 35-75-27 Факс: 8 (8652) 56-66-90

E-mail: <u>concern@energomera.ru</u> Web-сайт: <u>www.energomera.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Телефон: 8 (495) 437-55-77 Факс: 8 (495) 437-56-66 E-mail: office@vniims.ru Web-сайт: www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____2019 г.