ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ «Подгорное» Юго-Восточной ЖД - филиала ОАО «РЖД» в границах Воронежской области

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ «Подгорное» Юго-Восточной ЖД - филиала ОАО «РЖД» в границах Воронежской области (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - включает в себя измерительные трансформаторы тока (далее по тексту – TT) класса точности 0,2S и 0,5S по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее по тексту – TH) класса точности 0,2 и 0,5 по ГОСТ 1983-2001, счетчики активной и реактивной электроэнергии типа Альфа А1800, ЕвроАльфа класса точности 0,2S и 0,5S (в части активной электроэнергии по ГОСТ 30206-94, ГОСТ Р 52323-2005), класса точности 0,5 и 1,0 (в части реактивной электроэнергии по ГОСТ 26035-83, ГОСТ Р 52425-2005), вторичные измерительные цепи и технические средства приема-передачи данных;

2-й уровень – измерительно-вычислительный комплекс регионального Центра энергоучета, реализован на базе устройства сбора и передачи данных (далее по тексту – УСПД) RTU-327 (Госреестр № 41907-09, зав. № 000890), выполняющего функции сбора, хранения результатов измерений и передачи их на уровень Центра сбора данных АИИС КУЭ, и содержит программное обеспечение (далее по тексту – ПО) «АльфаЦЕНТР», с помощью которого решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов;

3-й уровень — измерительно-вычислительный комплекс Центра сбора данных АИИС КУЭ (далее по тексту — ИВК), реализованный на базе серверного оборудования (серверов сбора данных — основного и резервного, сервера управления), ПО «ЭНЕРГИЯ-АЛЬФА», включающий в себя каналы сбора данных с уровня регионального Центра энергоучета, каналы передачи данных субъектам оптового рынка электроэнергии и мощности (ОРЭМ).

Измерительные каналы (далее по тексту - ИК) состоят из трех уровней АИИС КУЭ. АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раза в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- периодический (1 раз в сутки) и/или по запросу автоматический сбор данных о состоянии средств измерений во всех измерительных каналах;
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений в заинтересованные организации; обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);

- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ:
 - конфигурирование и настройка параметров АИИС КУЭ;
 - ведение системы единого времени в АИИС КУЭ (синхронизация часов АИИС КУЭ). Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчиков электроэнергии. В счетчиках мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчиков вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД регионального Центра энергоучета, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИИС КУЭ.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации шкалы времени в системе в состав ИВК входит устройство синхронизации системного времени (УССВ) типа 35LVS (35HVS). Устройство синхронизации времени УССВ обеспечивает автоматическую синхронизацию часов сервера, при превышении порога \pm 1 с происходит коррекция часов сервера. Часы УСПД синхронизируются при каждом сеансе связи УСПД – сервер ИВК, коррекция проводится при расхождении часов УСПД и сервера на значение, превышающее \pm 1 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчиков и УСПД более чем на \pm 1 с.

Взаимодействие между уровнями АИИС КУЭ осуществляется по протоколу NTP по оптоволоконной связи, задержками в линиях связи пренебрегаем ввиду малости значений. Поправка часов счетчиков согласно описанию типа \pm 0,5 c, а с учетом температурной составляющей – \pm 1,5 c. Ход часов компонентов АИИС КУЭ не превышает \pm 5 с/сут.

Программное обеспечение

Уровень ИВК Центра сбора данных содержит ПО "ЭНЕРГИЯ-АЛЬФА", включающее в себя модуль "Энергия-Альфа 2". С помощью ПО "ЭНЕРГИЯ-АЛЬФА" решаются задачи автоматического накопления, обработки, хранения и отображения измерительной информации Уровень регионального Центра энергоучета содержит ПО "АльфаЦЕНТР", включающее в себя модули "АльфаЦЕНТР АРМ", "АльфаЦЕНТР СУБД "ORACLE", " АльфаЦЕНТР Коммуникатор". С помощью ПО "АльфаЦЕНТР" решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов.

Таблица 1.1 - Идентификационные данные ПО "АльфаЦЕНТР АРМ"

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	"АльфаЦЕНТР"	
Номер версии (идентификационный номер) ПО	4	
Цифровой идентификатор ПО	a65bae8d7150931f811cfbc6e4c7189d	
Другие идентификационные данные, если имеются	"АльфаЦЕНТР АРМ"	

Таблица 1.2 - Идентификационные данные ПО "АльфаЦЕНТР СУБД "ORACLE"

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	"АльфаЦЕНТР"	
Номер версии (идентификационный номер) ПО	9	
Цифровой идентификатор ПО	bb640e93f359bab15a02979e24d5ed48	
Другие идентификационные данные, если имеются	"АльфаЦЕНТР СУБД "ORACLE"	

Таблица 1.3 - Идентификационные данные ПО "АльфаЦЕНТР Коммуникатор"

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	"АльфаЦЕНТР"		
Номер версии (идентификационный номер) ПО	3		
Цифровой идентификатор ПО	3ef7fb23cf160f566021bf19264ca8d6		
Другие идентификационные данные, если имеются	"АльфаЦЕНТР Коммуникатор"		

Таблица 1.4 - Идентификационные данные ПО ПК "Энергия-Альфа 2"

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	"ЭНЕРГИЯ-АЛЬФА"	
Номер версии (идентификационный номер) ПО	2.0.0.2	
Цифровой идентификатор ПО	17e63d59939159ef304b8ff63121df60	
Другие идентификационные данные, если имеются	ПК "Энергия-Альфа 2"	

ПО ИВК «АльфаЦЕНТР» не влияет на метрологические характеристики системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ «Подгорное» Юго-Восточной ЖД - филиала ОАО «РЖД» в границах Воронежской области.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 3 нормированы с учетом ПО.

Уровень защиты программного обеспечения АИИС КУЭ от непреднамеренных и преднамеренных изменений соответствует уровню высокий согласно Р 50.2.77-2014.

Метрологические и технические характеристики

Состав 1-го и 2-го уровней системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ «Подгорное» Юго-Восточной ЖД - филиала ОАО «РЖД» в границах Воронежской области приведен в таблице 2.

Таблица 2 - Состав 1-го и 2-го уровней АИИС КУЭ

	Наименование объ-	Состав 1-го и 2-го уровней АИИС КУЭ				
№ИК	екта	Трансформатор тока	Трансформатор на- пряжения	Счетчик	УСПД	Вид электро- энергии
1	2	3	4	5	6	7
1	ПС 110 кВ Подгорное, ВВ1-110 кВ	ТВГ-110 кл.т 0,2S Ктт = 300/5 Зав. № 3163-12; 3162-12; 3161- 12 Госреестр № 22440-07	CPA 123 κл.т 0,2 Ктн = (110000/√3)/(100/√3) Зав. № 1HSE8816269; 1HSE8816268; 1HSE8816270 Γοсреестр № 15852- 06	A1802RAL- P4GB-DW-4 кл.т 0,2S/0,5 Зав. № 01248267 Госреестр № 31857-11		актив- ная реак- тивная
2	ПС 110 кВ Подгорное, ВВ2-110 кВ	ТВГ-110 кл.т 0,2S Ктт = 300/5 Зав. № 2807-8; 2806-8; 2805-8 Госреестр № 22440-07	СРА 123 кл.т 0,2 Ктн = (110000/ $\sqrt{3}$)/(100/ $\sqrt{3}$) Зав. № 1HSE8784102; 1HSE8784104; 1HSE8784103 Госреестр № 15852- 06	A1802RAL- P4GB-DW-4 кл.т 0,2S/0,5 Зав. № 01248270 Госреестр № 31857-11		актив- ная реак- тивная
3	ПС 110 кВ Подгорное, ВЛ-Придонская	ТG 145N кл.т 0,2S Ктт = 300/5 Зав. № 04620; 04621; 04622 Госреестр № 30489-09	СРА 123 кл.т 0,2 Ктн = (110000/√3)/(100/√3) Зав. № 1HSE8816269; 1HSE8816268; 1HSE8816270 Госреестр № 15852- 06	A1802RAL- P4GB-DW-3 кл.т 0,2S/0,5 Зав. № 01248266 Госреестр № 31857-11	RTU-327 зав. № 000890 Госреестр № 41907-09	актив- ная реак- тивная
4	ПС 110 кВ Подгорное, ВЛ-Каменка	ТG 145N кл.т 0,2S Ктт = 300/5 Зав. № 04623; 04624; 05625 Госреестр № 30489-09	СРА 123 кл.т 0,2 Ктн = (110000/√3)/(100/√3) Зав. № 1HSE8784102; 1HSE8784104; 1HSE8784103 Госреестр № 15852- 06	A1802RAL- P4GB-DW-3 кл.т 0,2S/0,5 Зав. № 01248269 Госреестр № 31857-11		актив- ная реак- тивная
5	ПС 110 кВ Подгорное, ВВ1-10 кВ	ТОЛ-10 III-2 УХЛ1 кл.т 0,2S Ктт = 300/5 Зав. № 24002; 24000; 24001 Госреестр № 15128-01	НАМИТ-10-2 УХЛ2 кл.т 0,2 Ктн = 10000/100 Зав. № 2175110000002 Госреестр № 16687- 07	EA02RAL-P3B4 кл.т 0,2S/0,5 Зав. № 01110318 Госреестр № 16666-97		актив- ная реак- тивная

Продолжение таблицы 2

1	должение таолицы 2	3	4	5	6	7
6	ПС 110 кВ Подгорное, ВВ2-10 кВ	ТОЛ-10 III-2 УХЛ1 кл.т 0,2S Ктт = 300/5 Зав. № 20970; 20968; 20969 Госреестр № 15128-01	НАМИТ-10-2 УХЛ2 кл.т 0,2 Ктн = 10000/100 Зав. № 0941110000001 Госреестр № 16687- 07	EA02RAL-P3B4 кл.т 0,2S/0,5 Зав. № 01110365 Госреестр № 16666-97		актив- ная реак- тивная
7	ПС 110 кВ Подгорное, Ф6-10 кВ	ТЛК-10-9-У2 кл.т 0,2S Ктт = 50/5 Зав. № 2175110000006; 2175110000004 Госреестр № 42683-09	НАМИТ-10-2 УХЛ2 кл.т 0,2 Ктн = 10000/100 Зав. № 2175110000002 Госреестр № 16687- 07	EA05RL-P2B3 кл.т 0,5S/1,0 Зав. № 01036601 Госреестр № 16666-97		актив- ная реак- тивная
8	ПС 110 кВ Подгорное, Ф1-10 кВ	ТЛК-10-9-У2 кл.т 0,2S Ктт = 50/5 Зав. № 2175110000005; 2175110000003 Госреестр № 42683-09	НАМИТ-10-2 УХЛ2 кл.т 0,2 Ктн = 10000/100 Зав. № 0941110000001 Госреестр № 16687- 07	EA05RL-P2B3 кл.т 0,5S/1,0 Зав. № 01085463 Госреестр № 16666-97	DELL COS	актив- ная реак- тивная
9	ПС 110 кВ Подгорное, ВВ1-27,5 кВ	ТЛО-35 кл.т 0,2S Ктт = 1250/5 Зав. № 12788; 12790 Госреестр № 36291-11	ТЈС7 кл.т 0,5 Ктн = (275000/√3)/(100/√3) Зав. № 1VLT5209009240; 1VLT5209009242 Госреестр № 25430- 08	A1802RAL- P4GB-DW-3 кл.т 0,2S/0,5 Зав. № 01248271 Госреестр № 31857-11	RTU-327 зав. № 000890 Госреестр № 41907-09	актив- ная реак- тивная
10	ПС 110 кВ Подгорное, ВВ2-27,5 кВ	ТЛО-35 кл.т 0,2S Ктт = 1250/5 Зав. № 12793; 12795 Госреестр № 36291-11	ТЈС7 кл.т 0,5 Ктн = (275000/√3)/(100/√3) Зав. № 1VLT5209009244; 1VLT5209009243 Госреестр № 25430- 08	А1802RAL- P4GB-DW-3 кл.т 0,2S/0,5 Зав. № 01248268 Госреестр № 31857-11		актив- ная реак- тивная
11	ПС 110 кВ Подгорное, ДПР-1 27,5 кВ	ТЛО-35 кл.т 0,2S Ктт = 100/5 Зав. № 12799; 12797 Госреестр № 36291-11	ТЈС7 кл.т 0,5 Ктн = (275000/√3)/(100/√ 3) Зав. № 1VLT5209009240; 1VLT5209009242 Госреестр № 25430-08	EA05RL-P2B3 кл.т 0,5S/1,0 Зав. № 01036619 Госреестр № 16666-97		актив- ная реак- тивная

Продолжение таблицы 2

1	2	3	4	5	6	7
			TJC7			
12	ПС 110 кВ Подгорное, ДПР-2 27,5 кВ	ТЛО-35 кл.т 0,2S Ктт = 100/5 Зав. № 12798; 12796 Госреестр № 36291-11	кл.т 0,5 Ктн = (275000/√3)/(100/√3) Зав. № 1VLT5209009244; 1VLT5209009243 Госреестр № 25430-08	EA05RL-P2B3 кл.т 0,5S/1,0 Зав. № 01036582 Госреестр № 16666-97		актив- ная реак- тивная
13	ПС 110 кВ Подгорное, СЦБ-1	ТЛО-10 1У2 кл.т 0,2S Ктт = 10/5 Зав. № 8126; 8131; 8130 Госреестр № 25433-08	ЗНОЛП-ЭК-10 кл.т 0,5 Ктн = (6000/√3)/(100/√3) Зав. № 96; 93; 94 Госреестр № 40014-08	EA05L-P1B3 кл.т 0,5S/1,0 Зав. № 011046631 Госреестр № 16666-97		актив- ная реак- тивная
14	ПС 110 кВ Подгорное, СЦБ-2	ТЛО-10 1У2 кл.т 0,2S Ктт = 10/5 Зав. № 8124; 8128; 8125 Госреестр № 25433-08	ЗНОЛП-ЭК-10 кл.т 0,5 Ктн = (6000/√3)/(100/√3) Зав. № 97; 99; 95 Госреестр № 40014-08	EA05L-P1B3 кл.т 0,5S/1,0 Зав. № 01046630 Госреестр № 16666-97	RTU-327 зав. № 000890 Госреестр	актив- ная реак- тивная
15	ПС 110 кВ Подгорное, Фидер р/рел.	ТЛО-10 1У2 кл.т 0,2S Ктт = 10/5 Зав. № 8127; 8129; 8123 Госреестр № 25433-08	ЗНОЛП-ЭК-10 кл.т 0,5 Ктн = (6000/√3)/(100/√3) Зав. № 92; 100; 98 Госреестр № 40014-08	EA05RL-P2B3 кл.т 0,5S/1,0 Зав. № 01087819 Госреестр № 16666-97	№ 41907-09	актив- ная реак- тивная
16	ПС 110 кВ Подгорное, ТСН-1	ТСН-6.2 кл.т 0,5S Ктт = 750/5 Зав. № 31099; 31102; 31095 Госреестр № 26100-03	-	EA05L-P1B4 кл.т 0,5S/1,0 Зав. № 01036522 Госреестр № 16666-97		актив- ная реак- тивная
17	ПС 110 кВ Подгорное, ТСН-2	ТСН-6.2 кл.т 0,5S Ктт = 750/5 Зав. № 31097; 31101; 31100 Госреестр № 26100-03	-	EA05RAL-B4 кл.т 0,5S/1,0 Зав. № 01100192 Госреестр № 16666-97		актив- ная реак- тивная

Продолжение таблицы 2

1	2	3	4	5	6	7
18	ПС 110 кВ Подгорное, Ф-КУ	3aB. № 1682 Госреестр №	ТЈС7 кл.т 0,5 Ктн = (275000/√3)/(100/√3) Зав. № 1VLT5209009240; 1VLT5209009242 Госреестр № 25430- 08	01036549 Госреестр №	RTU-327 зав. № 000890 Госреестр № 41907-09	актив- ная реак- тивная

Таблица 3- Метрологические характеристики ИК (активная энергия)

Таблица 3– Метрологические характеристики ИК (активная энергия)							
		Пределы допускаемой относительной погрешности ИК при из-					
***		мерении активной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ (d), %					
Номер ИК	cosφ			, , , ,			
		d _{1(2)%} ,	d _{5 %} ,	d _{20 %} ,	d _{100 %} ,		
		I _{1(2)%} £ I _{изм} <i<sub>5%</i<sub>					
1	2	3	4	5	6		
	1,0	±1,2	±0,8	±0,7	±0,7		
1 – 6	0,9	±1,3	±0,9	±0,8	±0,8		
(Сч. 0,2S; TT 0,2S; TH	0,8	±1,4	±1,0	±0,8	±0,8		
0,2)	0,7	±1,6	±1,1	±0,9	±0,9		
	0,5	±2,1	±1,4	$\pm 1,1$	±1,1		
	1,0	±1,9	±1,4	±1,4	±1,4		
7, 8,	0,9	±2,0	±1,5	±1,4	±1,4		
(Сч. 0,5S; TT 0,2S; TH	0,8	±2,1	±1,6	±1,5	±1,5		
0,2)	0,7	±2,2	±1,8	±1,5	±1,5		
	0,5	±2,7	±2,2	±1,7	±1,7		
	1,0	±1,3	±1,0	±0,9	±0,9		
9, 10,	0,9	±1,4	±1,0	±1,0	±1,0		
(Сч. 0,2S; TT 0,2S; TH	0,8	±1,5	±1,2	±1,1	±1,1		
0,5)	0,7	±1,7	±1,3	±1,2	±1,2		
	0,5	±2,4	±1,8	±1,6	±1,6		
	1,0	±2,0	±1,5	±1,5	±1,5		
11 – 15, 18	0,9	±2,1	±1,6	±1,5	±1,5		
(Сч. 0,5S; TT 0,2S; TH	0,8	±2,2	±1,7	±1,6	±1,6		
0,5)	0,7	±2,4	±1,9	±1,7	±1,7		
	0,5	±2,9	±2,4	±2,0	±2,0		
	1,0	±2,3	±1,5	±1,4	±1,4		
16 17	0,9	±2,7	±1,7	±1,5	±1,5		
16, 17, (Сч. 0,5S; TT 0,5S)	0,8	±3,2	±2,0	±1,6	±1,6		
(01.0,00, 11.0,00)	0,7	±3,8	±2,3	±1,8	±1,8		
	0,5	±5,6	±3,2	±2,3	±2,3		

Таблица 4 – Метрологические характеристики ИК (реактивная энергия)

тиолици ч тистрологи т					ости ИК при из-		
		мерении реактивной электрической энергии в рабочих условиях					
Номер ИК	cosφ		эксплуатации АИИС КУЭ (d), %				
		d _{1(2)%} ,	$d_{5\%},$	d _{20 %} ,	d _{100 %} ,		
		$I_{1(2)\%}$ £ $I_{M3M} < I_{5\%}$	$I_{5\%}$ £ $I_{изм}$ < $I_{20\%}$	$I_{20} \% EI_{_{\rm H3M}} < I_{100\%}$	I_{100} %£ $I_{изм}$ £ $I_{120\%}$		
	0,9	±2,3	±1,3	±1,0	±1,0		
1 – 6	0,8	±1,6	±0,9	±0,7	±0,7		
(Сч. 0,5; TT 0,2S; TH 0,2)	0,7	±1,3	± 0.8	±0,6	±0,6		
	0,5	$\pm 1,1$	±0,6	±0,5	±0,5		
	0,9	±4,5	±4,1	±4,0	±3,6		
7, 8,	0,8	±4,1	±3,9	±3,4	±3,4		
(Сч. 1,0; TT 0,2S; TH 0,2)	0,7	±4,0	±3,8	±3,4	±3,4		
	0,5	±3,8	±3,7	±3,3	±3,3		
	0,9	±2,6	±1,8	±1,6	±1,6		
9, 10,	0,8	±1,8	±1,3	±1,1	±1,1		
(Сч. 0,5; TT 0,2S; TH 0,5)	0,7	±1,5	±1,1	±1,0	±1,0		
	0,5	±1,2	±0,9	±0,8	±0,8		
	0,9	±4,7	±4,3	±4,2	±3,8		
11 – 15, 18	0,8	±4,2	±4,0	±3,5	±3,5		
(Сч. 1,0; TT 0,2S; TH 0,5)	0,7	±4,0	±3,9	±3,4	±3,4		
	0,5	±3,8	±3,7	±3,3	±3,3		
	0,9	±7,3	±5,0	±4,4	±4,0		
16, 17,	0,8	±5,6	±4,3	±3,6	±3,6		
(Сч. 1,0; TT 0,5S)	0,7	±4,9	±4,1	±3,5	±3,5		
	0,5	±4,3	±3,8	±3,3	±3,3		

Примечания:

- 1 Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$..
- 2 Характеристики относительной погрешности ИК даны для измерения электроэнергии и средней мошности (30 мин.).
- 3 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
- 4 Нормальные условия эксплуатации:
- Параметры сети: диапазон напряжения от 0,98-Uном до 1,02-Uном; диапазон силы тока от Іном до 1,2-Іном, соѕj =0,9 инд; частота (50 ± 0,15) Γ ц;
- температура окружающего воздуха: ТТ и TH от минус 40 до плюс 50°С; счетчиков от плюс 18 до плюс 25°С; ИВКЭ от плюс 10 до плюс 30°С; ИВК от плюс 10 до плюс 30°С;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
- 5 Рабочие условия эксплуатации:

Для TT и TH:

- параметры сети: диапазон первичного напряжения от $0.9 \cdot \text{Uh1}$ до $1.1 \cdot \text{Uh1}$; диапазон силы первичного тока от 0.01 Ih1 до 1.2 Ih1; коэффициент мощности соѕј (sinj) от 0.5 до 1.0 (от 0.4 до 0.9); частота (50 ± 0.4) Γ ц;
 - температура окружающего воздуха от минус 30 до плюс 35°C.

Для электросчетчиков:

- для счетчиков электроэнергии Альфа A1800 от минус 40 до плюс 65 °C
- для счетчиков электроэнергии ЕвроАльфа от минус 40 до плюс 70 °C;
- параметры сети: диапазон вторичного напряжения от 0,9·UH2 до 1,1·UH2;
- сила тока от 0,01·Іном до 1,2·Іном для ИК № 1 18; коэффициент мощности соѕј (sinj) от 0,5 до 1,0 (от 0,4 до 0,9); частота $(50 \pm 0,4)$ Γ ц;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
- 6 Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Допускается замена УСПД на однотипный утвержденного типа. Замена оформляется актом в установленном на подстанции ОАО "РЖД" порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчики электроэнергии Альфа A1800 среднее время наработки на отказ не менее 120000 часов;
- счетчики электроэнергии ЕвроАльфа среднее время наработки на отказ не менее 80000 часов;
- УСПД (RTU-327) среднее время наработки на отказ не менее 40000 часов;
- УССВ 35HVS среднее время наработки на отказ не менее 35000 часов;
- ИВК «АльфаЦЕНТР» среднее время наработки на отказ не менее 70000 часов; Среднее время восстановления, при выходе из строя оборудования:
- для счетчиков электроэнергии Тв ≤ 2 часа;
- для УСПД Тв ≤ 1 час;
- для сервера Тв ≤ 1 час;
- для компьютера APM Тв ≤ 1 час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют возможность пломбирования;
- на счетчики предусмотрена возможность пломбирование крышки зажимов и откидывающейся прозрачной крышки на лицевой панели счетчиков;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, серверах, APM;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и разграничение прав доступа;
- защита результатов измерений при передаче информации (возможность использования цифровой подписи).

Наличие фиксации в журнале событий счетчиков следующих событий

- фактов параметрирования счетчиков;
- фактов пропадания напряжения;
- фактов коррекции шкалы времени.

Возможность коррекции шкалы времени в:

- счетчиках (функция автоматизирована);
- серверах, APM (функция автоматизирована). Глубина хранения информации:
- счетчики электроэнергии Альфа А1800 до 30 лет при отсутствии питания;
- счетчики электроэнергии ЕвроАльфа до 5 лет при температуре 25 °C
- УСПД (RTU-327) Хранение данных при отключении питания не менее 5 лет;
- ИВК хранение результатов измерений и информации о состоянии средства измерений не менее 5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульный лист Паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 5

Таблица 5 – Комплектность АИИС КУЭ

Наименование	Обозначение (Тип)	Кол-во, шт.
Трансформаторы тока встроенные	ТВГ-110	6
Трансформаторы тока	TG	6
Трансформаторы тока	ТОЛ 10-1	6
Трансформаторы тока	ТЛК	4
Трансформаторы тока	ТЛО-35	9
Трансформаторы тока	ТЛО-10	9
Трансформаторы тока	ТСН	6
Трансформаторы напряжения	CPA 123	6
Трансформаторы напряжения	НАМИТ-10-2	2
Трансформаторы напряжения	TJC7	4
Трансформаторы напряжения	ЗНОЛП-ЭК-10	9
Счетчики электрической энергии трехфазные многофункциональные	Альфа А1800	6
Счетчики электроэнергии многофункциональные	ЕвроАЛЬФА	12
Сервер базы данных (основной)	HP ML-570 зав. № 8007LQM327	1
Устройство синхронизации времени	YCCB 35HVS	1
Устройство сбора и передачи дан- ных	RTU-327	1
Комплексы измерительно-	«АльфаЦЕНТР»	1
вычислительные для учета электро- энергии	«ЭНЕРГИЯ-АЛЬФА»	1
Методика поверки	МП 1971/550-2014	1
Паспорт-формуляр	Э/01-10/03-13.01.3-ИИК.ОС 02- 04.ПФ	1

Поверка

осуществляется по документу МП 1971/550-2014 "ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ «Подгорное» Юго-Восточной ЖД - филиала ОАО «РЖД» в границах Воронежской области. Измерительные каналы. Методика поверки", утвержденному ФБУ «Ростест-Москва» в ноябре 2014 г.

Основные средства поверки:

- TT πο ΓΟCT 8.217-2003;
- **-** TH по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- для счетчиков Альфа A1800 в соответствии с документом МП-2203-0042-2006 « Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки», утвержденным ГЦИ СИ «ВНИИМС им. Д. И. Менделеева» в мае 2006 г.;
- счетчиков ЕвроАльфа в соответствии с документом МП-ВНИИМ «ГСИ. Счетчики электрической энергии многофункциональные ЕвроАльфа. Методика поверки», утвержденным ГЦИ СИ «ВНИИМ» в октябре 2007 г.;
- УСПД RTU-327 по документу «Устройства сбора и передачи данных серии RTU -327. Методика поверки. ДЯИМ.466215.007 МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2009 г.;

- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Госреестр № 27008-04);
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01.

Сведения о методиках (методах) измерений

«Методика (методы) измерений количества электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ «Подгорное» Юго-Восточной ЖД - филиала ОАО «РЖД» в границах Воронежской области». Аттестована ФБУ «Ростест-Москва». Свидетельство об аттестации методики измерений № 1407/550-01.00229-2014 от 18.11.2014 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 110 кВ «Подгорное» Юго-Восточной ЖД - филиала ОАО «РЖД» в границах Воронежской области

- 1 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли.

Изготовитель

Открытое акционерное общество "Российские железные дороги" (ОАО "РЖД")

Адрес: 107174, г. Москва, Новая Басманная ул., д.2

Тел.: (499) 262-60-55 Факс: (499) 262-60-55 e-mail: <u>info@rzd.ru</u> http://www.rzd.ru/

Испытательный центр

Государственный центр испытаний средств измерений

Федеральное бюджетное учреждение «Государственный региональный центр

стандартизации, метрологии и испытаний в г. Москве» (ГЦИ СИ ФБУ «Ростест-Москва»)

Адрес: 117418 г. Москва, Нахимовский проспект, 31

Тел. (495) 544-00-00

Аттестат аккредитации по проведению испытаний средств измерений в целях утверждения типа N 30010-10 от 15.03.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п.	« »	2014 г.
------	-----	---------