ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ТЭК-Энерго»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ТЭК-Энерго» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ 30206-94 ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и по ГОСТ 26035-83, ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.
- 2 уровень измерительно-вычислительный комплекс электроустановки (ИВКЭ) АИИС КУЭ, включающий в себя:
- ИВКЭ ПС «Омичка» и информационно-вычислительный комплекс (ИВК) Когалымских ЭС ОАО «Тюменьэнерго», включающий в себя устройство сбора и передачи данных ЭКОМ-3000 (далее УСПД), каналообразующую аппаратуру, сервер сбора данных ОАО «Тюменьэнерго» филиал Когалымские электрические сети, устройство синхронизации времени (далее УСВ), входящее в состав УСПД;
- ИВКЭ ПС 220/110/10кВ «Литейная» и ИВК филиала ОАО «ФСК ЕЭС» МЭС Центра, включающий в себя УСПД ТОК-С каналообразующую аппаратуру, сервер сбора данных филиала ОАО «ФСК ЕЭС» МЭС Центра, радиосервер точного времени РСТВ-01;
- ИВКЭ ПС ПС 35/10 кВ «Вербежичи» и ИВК филиала ОАО «МРСК Центра и Приволжья» «Калугаэнерго», г. Калуга, включающий в себя УСПД СИКОН С10, каналообразующую аппаратуру, сервер сбора данных филиала ОАО «МРСК Центра и Приволжья» «Калугаэнерго», г. Калуга, УСВ-1;
- ИВКЭ ПС 110/35/6кВ «Аксинино» и ИВК филиала ОАО «МРСК Центра» «Брянскэнерго», г. Брянск, включающий в себя УСПД СИКОН С70, каналообразующую аппаратуру, сервер сбора данных филиала ОАО «МРСК Центра» «Брянскэнерго», г. Брянск, УСВ-1;
- ИВКЭ ПС 110/35/6кВ «Дмитровская» и ИВК филиала ОАО «МРСК Центра» «Орелэнерго», г. Орел, включающий в себя УСПД RTU-325L, каналообразующую аппаратуру, сервер сбора данных филиала ОАО «МРСК Центра» «Орелэнерго», г. Орел, УСВ-1.
- 3 уровень ИВК ООО «ТЭК-Энерго», включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (APM), УСВ и программное обеспечение (далее Π O) «Энергосфера».

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям

силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Для ИК 1-12 цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на ИВК филиала ОАО «ФСК ЕЭС» МЭС Центра (для ИК 1-3), ИВК филиала ОАО «МРСК Центра и Приволжья» «Калугаэнерго» (для ИК 4), ИВК филиала ОАО «МРСК Центра» «Орелэнерго», г. Орел (для ИК 10), ИВК Когалымских ЭС ОАО «Тюменьэнерго» (для ИК 11-12, а также отображение информации по подключенным к УСПД устройствам. На ИВК выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление справочных и отчетных документов, передача информации о результатах измерений, состоянии средств измерений в формате ХМL-макетов 80020 в ИВК ООО «ТЭК-Энерго» через канал Internet.

Для ИК 13-14 цифровой сигнал с выходов счетчиков с использованием GSM/GPRS комуникатора поступает на верхний уровень системы, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации и ее накопление.

Измерительная информация записывается в ИВК ООО «ТЭК-Энерго» базу данных в автоматическом режиме, с использованием ЭЦП, раз в сутки формирует и отправляет по выделенным каналам связи отчеты в формате XML всем заинтересованным субъектам (ПАК ОАО «АТС», ОАО «СО ЕЭС», смежные субъекты ОРЭ).

В АИИС КУЭ реализован информационный обмен данными макетами XML формата 80020, 80030 со смежными системами: Система автоматизированная информационно измерительная коммерческого учета электрической энергии (мощности) АИИС КУЭ ОАО "Калугаэнерго" РСК (Номер в госреестре СИ № 35160-07), Система автоматизированная информационно измерительная коммерческого учета электрической энергии ПС 220 кВ "Литейная" - АИИС КУЭ ПС 220 кВ "Литейная" (Номер в госреестре СИ № 42284-09), Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) АИ-ИС КУЭ ОАО "Брянскэнерго" Региональная сетевая компания для оптового рынка электроэнергии (Номер в госреестре СИ № 35371-07), Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) ОАО "Орелэнерго" (Номер в госреестре СИ № 39935-08).

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень счетчиков, ИВКЭ и ИВК ООО «ТЭК-Энерго». АИИС КУЭ оснащена устройствами синхронизации времени, на основе приемников сигналов точного времени от спутников глобальной системы позиционирования (GPS).

Для ИК 1-3 в качестве источника точного времени используется сервер точного времени РСТВ-01, для ИК 4-10 в качестве источника точного времени используется сервер точного времени УСВ-1, для ИК 11-12 в качестве источника точного времени используется устройство синхронизации времени, на базе GPS-приемника, входящего в состав УСПД ЭКОМ-3000, для ИК 13-14 в качестве источника точного времени используется устройство синхронизации времени, на базе GPS-приемника, корректирующего время ИВК ООО «ТЭК-Энерго»

Для ИК 1-3 коррекция часов УСПД проводится при расхождении часов УСПД и времени сервера точного времени РСТВ-01 более чем на \pm 1 с, погрешность синхронизации не более

 \pm 1 с. Часы ИВК филиала ОАО «ФСК ЕЭС» МЭС Центра синхронизируются от GPS-приемника, погрешность синхронизации не более \pm 1 с.

Для ИК 4-10 синхронизация часов ИВК осуществляется от часов УСВ-1, погрешность синхронизации не более \pm 1 с. Коррекция часов УСПД проводится при расхождении часов УСПД и часов ИВК более чем на \pm 1 с, погрешность синхронизации не более \pm 1 с.

Для ИК 11-12 коррекция часов УСПД проводится при расхождении часов УСПД и времени приемника более чем на \pm 1 с, погрешность синхронизации не более \pm 1 с. Часы ИВК Когалымских ЭС ОАО «Тюменьэнерго» синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов ИВК и УСПД более чем на \pm 2 с.

Для ИК 1-12 часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на \pm 2 с.

Для ИК 13-14 часы счетчиков синхронизируются от часов ИВК ООО «ТЭК-Энерго» с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и ИВК более чем на ± 2 с.

Погрешность часов компонентов АИИС КУЭ не превышает ± 5 с.

Журналы событий счетчика электроэнергии и УСПД отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ ООО «ТЭК-Энерго» используется ПО «Энергосфера» версии 7.0, в состав которого входят программы, указанные в таблице 1. ПО «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «Энергосфера».

Таблица 1 – Метрологические значимые модули ПО

Наименование программного обеспечения	Идентификаци- онное наимено- вание программ- ного обеспече- ния	Номер версии (идентифика- ционный но- мер) программ- ного обеспечения	Цифровой идентифи- катор программного обеспечения (кон- трольная сумма ис- полняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
ПК «Энерго- сфера»	Библиотека pso_metr.dll	1.1.1.1	CBEB6F6CA69318BED 976E08A2BB7814B	MD5

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ΠO .

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительных каналов и их метрологические характеристики приведены в таблице 2 Таблица 2 - Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики

		Измерительные компоненты					Метрологические характеристики ИК	
Номер ИК	Наименование объекта	TT	ТН	Счётчик	УСПД	Вид элек- троэнергии	Основ- ная по- греш- ность, %	Погрешность в рабочих условиях, %
1	2	3	4	5	6	7	8	9
			ПС 220/110/10кВ	«Литейная»				
1	ОРУ-110кВ, 1(2) СШ-110 кВ, ВЛ- 110кВ «Цемент- ная - Литейная»	ТФНД-110М Кл. т. 0,5 300/5 Зав. № 95; Зав. № 1056	НКФ-110-57 У1 Кл. т. 0,5 110000/√3:100/√3 Зав. № 1040932; Зав. № 1040997; Зав. № 1040938	EPQS 111.21.18LL Кл. т. 0,2S/0,5 Зав. № 461360	ТОК-С Зав. № 1130	активная	±1,1 ±2,7	±3,0 ±4,8
2	ОРУ-110кВ, 1(2) СШ-110 кВ, ВЛ- 110кВ «Дятьков- ская - Литейная»	ТФЗМ-110Б-1У1 Кл. т. 0,5 300/5 Зав. № 44145; Зав. № 44140	НКФ-110-57 У1 Кл. т. 0,5 110000/√3:100/√3 Зав. № 1040961; Зав. № 1040949; Зав. № 1040962	EPQS 111.21.18LL Кл. т. 0,2S/0,5 Зав. № 461383	ТОК-С Зав. № 1130	активная	±1,1 ±2,7	±3,0 ±4,8
3	ОРУ-110кВ, ОМВ-110 кВ	ТВ-110/50 Кл. т. 0,5 600/1 Зав. № 24371; Зав. № 24372; Зав. № 24373	HKΦ-110-57 У1 Кл. т. 0,5 110000/√3:100/√3 Зав. № 1040932; Зав. № 1040997; Зав. № 1040938	EPQS 111.21.18LL Кл. т. 0,2S/0,5 Зав. № 461361	ТОК-С Зав. № 1130	активная	±1,1 ±2,7	±3,0 ±4,8

1	2	3	4	5	6	7	8	9
	ПС 35/10 кВ «Вербежичи»							
4	ОРУ-35 кВ, СШ- 35 кВ, ВЛ-35 кВ «Вербежичи - Бытошь»	ТФЗМ-35Б-1У1 Кл. т. 0,5 100/5 Зав. № 23236; Зав. № 23252	3HOM-35-65 Kл. т. 0,5 35000/√3:100/√3 Зав. № 1166128; Зав. № 1168613; Зав. № 11653678	СЭТ-4ТМ.02.2 Кл. т. 0,2S/0,5 Зав. № 07050545	СИКОН С10 Зав. № 125	активная	±1,1 ±2,6	±3,0 ±4,6
			ПС 110/35/6кВ «	Аксинино»				
5	ОРУ-110кВ, 2СШ-110 кВ, ВЛ-110кВ «Бо- городицкая- Аксинино»	ТФНД-110М Кл. т. 0,5 600/5 Зав. № 4838; Зав. № 6011; ТФЗМ-110Б-1У1 Кл. т. 0,5 600/5 Зав. № 49281	3HOГ-110 Кл. т. 0,5 110000/√3:100/√3 Зав. № 296; Зав. № 319; Зав. № 273	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 0102061032	СИКОН С70 Зав. № 01255	активная реактивная	±1,1 ±2,6	±3,0 ±4,6
6	ОРУ-110кВ, 2СШ-110 кВ, ВЛ-110кВ «Ак- синино- Шаблыкино»	ТФНД-110М Кл. т. 0,5 300/5 Зав. № 8449; Зав. № 8466; Зав. № 8433	3HOГ-110 Кл. т. 0,5 110000/√3:100/√3 Зав. № 296; Зав. № 319; Зав. № 273	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 0112058049	СИКОН С70 Зав. № 01255	активная	±1,1 ±2,6	±3,0 ±4,6
7	ОРУ-110кВ, ОСШ-110 кВ, СОВ-110кВ	ТФЗМ-110Б-1У1 Кл. т. 0,5 600/5 Зав. № 20984; Зав. № 21005; Зав. № 20966	3HOΓ-110 Kл. т. 0,5 110000/√3:100/√3 3ав. № 296; 3ав. № 319; 3ав. № 273	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 0112058071	СИКОН С70 Зав. № 01255	активная	±1,1 ±2,6	±3,0 ±4,6

1	2 гжение таолицы 2	3	4	5	6	7	8	9
1	<u> </u>		+	J	U	/	O	7
8	ОРУ-35 кВ, 1СШ-35 кВ, ВЛ- 35 кВ «Аксини- но-Юрьево»	ТФЗМ 35А-УТ Кл. т. 0,5 200/5 Зав. № 21987; ТФН-35М Кл. т. 0,5 200/5 Зав. № 27225	3HOM-35-65 Кл. т. 0,5 35000/√3:100/√3 Зав. № 1081091; Зав. № 1081101; Зав. № 1081136	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 0112058177	СИКОН С70 Зав. № 01255	активная реактивная	±1,1 ±2,6	±3,0 ±4,6
9	ОРУ-35 кВ, 2СШ-35 кВ, ВЛ- 35 кВ «Аксини- но-Ильинская»	ТФН-35 Кл. т. 0,5 50/5 Зав. № 14250; Зав. № 14040	3HOM-35-65 Кл. т. 0,5 35000/√3:100/√3 Зав. № 1120807; Зав. № 1121024; Зав. № 1121081	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 0112058048	СИКОН С70 Зав. № 01255	активная реактивная	±1,1 ±2,6	±3,0 ±4,6
			ПС 110/35/6кВ «Д	[митровская»				
10	ОРУ-110кВ, 2СШ-110 кВ, ВЛ-110кВ «Дмитровск- Лопандино»	ТФНД-110М Кл. т. 0,5 400/5 А: Зав. № 1152; С: Зав. № 1207; ТФЗМ 110Б-IV Кл. т. 0,5 400/5 В: № 14415	НКФ110-83У1 Кл. т. 0,5 110000/√3:100/√3 Зав. № 31856; Зав. № 31884; Зав. № 31906	ПСЧ-4ТМ.05МК.12 Кл. т. 0,5S/1,0 Зав. № 1112115768	RTU-325L 3aв. № 007980	активная реактивная	±1,2 ±2,8	±3,3 ±5,7
	ПС 110/35/6кВ Омичка							
11	ВЛ-35кВ Чайка- 1	ТФЗМ-35А-У1 Кл. т. 0,5 200/5 Зав. № 40992; Зав. № 42053	НАМИ-35 Кл. т. 0,5 35000/100 Зав. № 660	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0805090065	ЭКОМ- 3000 Зав. № 07092486	активная	±1,1 ±2,7	±3,0 ±4,7

1	2	3	4	5	6	7	8	9
12	ВЛ-35кВ Чайка- 2	ТФЗМ-35А-У1 Кл. т. 0,5 200/5 Зав. № 71475; Зав. № 71482	НАМИ-35 Кл. т. 0,5 35000/100 Зав. № 78	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0805090008	ЭКОМ- 3000 Зав. № 07092486	активная	±1,1 ±2,7	±3,0 ±4,7
			ПС 220/110/10/	6 Когалым				
13	ЗРУ-6 1АТ яч.12	ТЛШ-10 Кл. т. 0,5 3000/5 Зав. № 1219; Зав. № 1221; Зав. № 1217	3HOЛП-6 Кл. т. 0,5 6000:√3/100:√3 Зав. № 2181; Зав. № 4079; Зав. № 4080	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 02054683	-	активная	±1,1 ±2,6	±3,0 ±4,6
14	ЗРУ-6 ЗСТ яч.18	ТЛІІІ-10 Кл. т. 0,5 3000/5 Зав. № 1223; Зав. № 1220; Зав. № 1224	ЗНОЛП-6 Кл. т. 0,5 6000:√3/100:√3 Зав. № 4083; Зав. № 3403; Зав. № 3302	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5 Зав. № 02056533	-	активная	±1,1 ±2,6	±3,0 ±4,6

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0.98-1.02) Uном; ток (1.0-1.2) Іном, частота (50 ± 0.15) Γ ц; \cos ј = 0.9 инд.;
- температура окружающей среды: ТТ и ТН от плюс 15 °C до плюс 35 °C; счетчиков от плюс 21 °C до плюс 25 °C; УСПД от плюс 10 °C до плюс 30 °C; ИВК от плюс 10 °C до плюс 30 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление $(100 \pm 4) \ \kappa\Pi a;$
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
 - 4. Рабочие условия эксплуатации:
 - для ТТ и ТН:
 - параметры сети: диапазон первичного напряжения (0,9-1,1) Uн $_1$; диапазон силы первичного тока (0,05-1,2) Ін $_1$; коэффициент мощности соsj (sinj) 0,5-1,0 (0,87-0,5); частота $(50\pm0,4)$ Γ ц;
 - температура окружающего воздуха от минус 40 °C до плюс 70 °C.
 - для счетчиков электроэнергии:
 - параметры сети: диапазон вторичного напряжения (0.9 1.1) UH₂; диапазон силы вторичного тока (0.01 1.2) IH₂; коэффициент мощности соsj (sinj) 0.5 1.0 (0.87 0.5); частота (50 ± 0.4) Γ Ц;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100 \pm 4) кПа;
 - температура окружающего воздуха:
 - для счётчиков электроэнергии EPQS 111.21.18LL от минус 40 °C до плюс 60 °C:
 - для счётчиков электроэнергии СЭТ-4ТМ.02.2 от минус 40 °С до плюс 60 °С;
 - для счётчиков электроэнергии СЭТ-4ТМ.03 от минус 40 °С до плюс 60 °С;
 - для счётчиков электроэнергии ПСЧ-4ТМ.05МК.12 от минус 40 °C до плюс 60 °C:
 - для счётчиков электроэнергии СЭТ-4ТМ.03М от минус 40 °С до плюс 60 °С;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
 - для аппаратуры передачи и обработки данных:
 - параметры питающей сети: напряжение (220 ± 10) В; частота (50 ± 1) Гц;
 - температура окружающего воздуха от плюс 10 °C до плюс 30 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 \pm 4) кПа.
- 5. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от 0 °C до плюс 40 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа. Замена оформляется актом в установленном на ООО «ТЭК-Энерго» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

– электросчётчик EPQS 111.21.18LL – среднее время наработки на отказ не менее Т

- = 70000 ч, среднее время восстановления работоспособности tв = 2 ч;
- электросчётчик СЭТ-4ТМ.02.2 среднее время наработки на отказ не менее T=90000 ч, среднее время восстановления работоспособности t = 2 ч;
- электросчётчик СЭТ-4ТМ.03 среднее время наработки на отказ не менее T = 90000 ч, среднее время восстановления работоспособности t = 2 ч;
- электросчётчик ПСЧ-4ТМ.05МК.12 среднее время наработки на отказ не менее T=165000 ч, среднее время восстановления работоспособности t=2 ч;
- электросчётчик СЭТ-4ТМ.03М среднее время наработки на отказ не менее T=140000 ч, среднее время восстановления работоспособности t = 2 ч;
- УСПД ТОК-С среднее время наработки на отказ не менее T=40000 ч, среднее время восстановления работоспособности t=2 ч;
- УСПД СИКОН С10 среднее время наработки на отказ не менее T=70000 ч, среднее время восстановления работоспособности t=2 ч;
- УСПД СИКОН С70 среднее время наработки на отказ не менее T=70000 ч, среднее время восстановления работоспособности t=2 ч;
- УСПД RTU-325L среднее время наработки на отказ не менее T=40000 ч, среднее время восстановления работоспособности t=2 ч;
- УСПД ЭКОМ-3000 среднее время наработки на отказ не менее $T=75000~\rm y$, среднее время восстановления работоспособности $t=2~\rm y$;
- сервер среднее время наработки на отказ не менее $T=70000\,$ ч, среднее время восстановления работоспособности $t = 1\,$ ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

– электросчетчиках (функция автоматизирована);

- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; сохранение информации при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии, потребленной за месяц, по каждому каналу не менее 35 суток; сохранение информации при отключении питания не менее 10 лет;
- Сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ООО «ТЭК-Энерго» типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

Наименование	Тип	№ Госреестра	Количество, шт.
1	2	3	4
Трансформатор тока	ТФНД-110М	2793-71	9
Трансформатор тока	ТФ3М-110Б-1У1	2793-88	6
Трансформатор тока	TB-110/50	3190-72	3
Трансформатор тока	ТФЗМ-35Б-1У1	3689-73	2
Трансформатор тока	ТФЗМ 35А-У1	26417-04	5
Трансформатор тока	ТФН-35	664-51	2
Трансформатор тока	ТЛШ-10	11077-07	6
Трансформатор тока	ТФЗМ 110Б-IV	26422-06	1
Трансформатор тока	ТФН-35М	3690-73	1
Трансформатор напряжения	НКФ-110-57 У1	14205-94	6
Трансформатор напряжения	3HOM-35-65	912-07	9
Трансформатор напряжения	3НОГ-110	23894-12	3
Трансформатор напряжения	НКФ110-83 У1	1188-84	3
Трансформатор напряжения	НАМИ-35	19813-09	2
Трансформатор напряжения	ЗНОЛП-6	23544-07	6
Счётчик электрической энергии многофункциональный	EPQS 111.21.18LL	25971-06	3
Счётчик электрической энер- гии многофункциональный	СЭТ-4ТМ.02.2	20175-01	1
Счётчик электрической энер- гии многофункциональный	СЭТ-4ТМ.03	27524-04	7

1	2	3	4
Счётчик электрической энергии многофункциональный	ПСЧ-4ТМ.05МК.12	50460-12	1
Счётчик электрической энергии многофункциональный	СЭТ-4ТМ.03М	36697-08	2
Устройство сбора и передачи данных	ТОК-С	13923-09	1
Устройство сбора и передачи данных	СИКОН С10	21741-03	1
Устройство сбора и передачи данных	СИКОН С70	28822-05	1
Устройство сбора и передачи данных	RTU-325L	37288-08	1
Устройство сбора и передачи данных	ЭКОМ-3000	17049-09	1
Программное обеспечение	«Энергосфера»	-	1
Методика поверки	-	<u>-</u>	1
Формуляр	-	-	1
Руководство по эксплуатации	-	-	1

Поверка

осуществляется по документу МП 58780-14 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «ТЭК-Энерго». Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» в июне 2014 г.

Перечень основных средств поверки:

- · трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2925-2005 «Измерительные трансформаторы напряжения $35...330/\sqrt{3}$ кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя»;
- · по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- · по МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- · счетчиков EPQS 111.21.18LL по документу PM 1039597-26:2002 «Счетчики электрической энергии многофункциональные EPQS», согласованному с Государственной службой метрологии Литовской Республики;
- · счетчиков СЭТ-4ТМ.02.2 по документу «Счетчики активной и реактивной электрической энергии переменного тока, статические, многофункциональные СЭТ-4ТМ.02. Руководство по эксплуатации. ИЛГШ.411152.087 РЭ1», раздел «Методика поверки», согласованному с ГЦИ СИ «Нижегородский ЦСМ» в 2001 г.;
- · счетчиков СЭТ-4ТМ.03 по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03. Руководство по эксплуатации. Методика поверки» ИЛГШ.411151.124 РЭ1, согласованному с ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10 сентября 2004 г.;
- · счетчиков ПСЧ-4ТМ.05МК.12 по документу «Счетчик электрической энергии ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки»

ИЛГШ.411152.167РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» 21 марта 2011 г.;

- \cdot счетчиков СЭТ-4ТМ.03М по документу «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145 РЭ1, согласованному с ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» декабря 2007 г.;
- · УСПД ТОК-С по документу «Устройство сбора данных «ТОК-С». Инструкция по эксплуатации. АМР1.00.00 ИЭ», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в 1994 г.;
- · УСПД СИКОН С10 по документу «Контроллеры сетевые индустриальный СИКОН С10. Методика поверки ВЛСТ 180.00.000 И1», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в марте 2003 г.;
- · УСПД СИКОН С70 по документу «Контроллеры сетевые индустриальный СИКОН С70. Методика поверки ВЛСТ 220.00.000 И1», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в мае 2005 г.;
- · УСПД RTU-325L по документу УСПД RTU-325 и RTU-325L Методика поверки ДЯИМ 466.453.005МП утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2008 г.
- · УСПД ЭКОМ-3000 по документу «ГСИ. Комплекс программно-технический измерительный ЭКОМ-3000. Методика поверки. ПБКМ.421459 МП», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в мае 2009 г.;
- · радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием АИИС КУЭ ООО «ТЭК-Энерго», аттестованной ФГУП «ВНИ-ИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ)

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- 3 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли.

Изготовитель

Общество с ограниченной ответственностью «Системы Релейной Защиты» (ООО «Системы Релейной Защиты»)

Юридический адрес: г. Москва, ул. Боровая, д. 7, стр. 10, пом. XII, комн. 11

Почтовый адрес: 140070, Московская область, п. Томиино, ул. Гаршина д. 11 а/я 32

Тел.: (495) 772-41-56 Факс: (495) 544-59-88

Заявитель

Общество с ограниченной ответственностью «Сервис-Метрология» (ООО «Сервис-Метрология»)

Юридический адрес: 119119, г. Москва, Ленинский пр-т, 42, 1-2-3 Почтовый адрес: 119119, г. Москва, Ленинский пр-т, 42, 25-35

Тел.: (499) 755-63-32 Факс: (499) 755-63-32 E-mail: info@s-metr.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений

в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин