ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики электрической энергии трехфазные электронные типа МИР С-03

Назначение средства измерений

Счетчики электрической энергии трехфазные электронные типа МИР С-03 (далее – счетчики) предназначены для измерения активной и реактивной электрической энергии прямого и обратного направлений, активной и реактивной мощности, частоты, среднеквадратических значений напряжения и силы переменного тока в трехфазных трехпроводных и четырехпроводных цепях переменного тока и организации многотарифного учета электроэнергии, а также измерений показателей качества электрической энергии в соответствии с ГОСТ 30804.4.30-2013 (ГОСТ Р 51317.4.30-2008) по следующим характеристикам:

- установившееся отклонение напряжения в системах электроснабжения частотой 50 Гц;
- отклонение значения основной частоты напряжения электропитания от номинального значения;
 - длительность провала напряжения;
 - глубина провала напряжения;
 - длительность перенапряжения.

Описание средства измерений

Принцип действия счетчиков основан на вычислении действующих значений тока и напряжения, активной и реактивной энергии, активной, реактивной и полной мощности, коэффициента мощности и частоты сети переменного тока по измеренным мгновенным значениям входных сигналов тока и напряжения.

Счетчики имеют в своем составе измерительное устройство, микроконтроллер, энергонезависимое flash-устройство, хранящее информацию о данных, и встроенные часы реального времени, позволяющие вести учет активной и реактивной электроэнергии по тарифным зонам суток, телеметрические выходы для подключения к системам автоматизированного учета потребленной электроэнергии или для поверки, встроенный источник питания, жидкокристаллический индикатор для просмотра информации, клавиатуру из трех кнопок, вход телесигнализации, интерфейс RS485, оптический порт, вход резервного питания и датчик вскрытия/закрытия крышки зажимов.

Счетчик обеспечивает учет и возможность считывания по интерфейсам активной энергии прямого и обратного направлений (либо суммарной по модулю активной энергии, рассчитываемой как сумма модулей активной энергии прямого и обратного направлений) и реактивной энергии прямого и обратного направлений (либо суммарной по модулю реактивной энергии, рассчитываемой как сумма модулей реактивной энергии прямого и обратного направлений) по каждому тарифу и суммарной по всем тарифам.

Пример записи счетчика электрической энергии трехфазного электронного класса точности 0,2S при измерении активной энергии, 0,5 — при измерении реактивной энергии, номинальным напряжением 57,7/100 B, с измерением активной и реактивной энергии в двух направлениях, с измерением параметров сети с нормированной погрешностью, с интерфейсом RS-485, каналом связи GSM, сетью Zigbee, с одним входом TC, с возможностью резервного питания от источника переменного тока промышленной частоты напряжением от 120 до 276 B или от источника постоянного тока напряжением от 120 до 276 B:

Счетчик электрической энергии трехфазный электронный типа МИР C-03.02T-EBN-RGZ-1T-H.

Счетчики в зависимости от модификации имеют следующее обозначение:

МИР C-03.XXX -XXXXXXXXXX - XXX -XXX - X

Резервное питание

L – постоянным током напряжением (9 - 36) В
 H – постоянным или переменным током напряжением (120 - 276) В
 Часть кода отсутствует при отсутствии цепи резервного питания

Наличие входов ТС и выходов ТУ

1Т – один вход ТС

2TC – четыре входа TC и два выхода $TY^{1)}$

Тип интерфейса

R – интерфейс RS-485

RR – два интерфейса RS-485

RC – интерфейсы RS-485 и CAN

RE – интерфейс RS-485 и сеть Ethernet

RG – интерфейс RS-485 и канал связи GSM

RZ – интерфейс RS-485 и сеть Zigbee

RRZ – два интерфейса RS-485 и сеть Zigbee

RCZ – интерфейсы RS-485, CAN и сеть Zigbee

REZ – интерфейс RS-485, сеть Ethernet и сеть Zigbee

RGZ – интерфейс RS-485, канал связи GSM и сеть Zigbee

Функции

E (A) — измерение активной и реактивной энергии в многотарифном режиме (измерение активной энергии в многотарифном режиме)

Q - контроль параметров качества электроэнергии

 $Q1^{2}$ – измерение параметров качества электроэнергии по ГОСТ 51317.4.30

Т – формирование событий о состоянии и изменениях в электрической сети

S - сбор данных

L-учет потерь

В - измерение энергии в двух направлениях

М – увеличенный объем срезов мощности

N – измерение параметров сети с нормированной погрешностью

D³⁾ – протокол обмена DLMS/COSEM

Номинальное напряжение

Т – номинальное фазное/линейное напряжение 3х57,7/100 В

D – номинальное фазное/линейное напряжение 3x(120-230)/(208-400) В

Класс точности при измерении активной/реактивной энергии

02 - класс точности 0,2\$/0,5

05 – класс точности 0,5S/1,0

Программное обеспечение

Встроенное программное обеспечение счетчиков реализовано аппаратно (в управляющем микроконтроллере) и разделено на метрологически значимую часть программного обеспечения (в дальнейшем – ПО) и метрологически незначимую часть.

Идентификационные данные ПО счетчиков приведены в таблице 1.

¹ – только для исполнений с интерфейсами R, RR, RC, RZ, RRZ и RCZ с резервным питанием постоянным или переменным током напряжением (120-276) В или без цепи резервного питания

^{2 –} возможна поставка с функцией Q или Q1

^{3 –} при отсутствии символа "D" счетчик имеет протокол обмена на основе DLMS

Встроенное программное обеспечение не может быть считано без применения специальных программно-технических устройств.

Программное обеспечение «КОНФИГУРАТОР СЧЕТЧИКОВ МИР» и «КОНФИГУРАТОР ПРИБОРОВ УЧЕТА» (внешнее) устанавливается на персональный компьютер и предназначено для чтения данных и настройки работы счетчиков по интерфейсам.

Таблица 1

Счетчик	Обозначение программного обеспечения	Идентификаци- онное наимено- вание программ- ного обеспече- ния	Версия ПО	Цифровой идентифика-тор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентифи-катора ПО
С протоко- лом обмена на основе DLMS	M09.00229-01	Рабочая про- грамма счетчика МИР С-03	4.0	0XF3A58736	CRC32
С протоко- лом обмена DLMS/ COSEM	M09.00229-02	Рабочая про- грамма счетчика МИР С-03	1.0	0XF5C534A1	CRC32

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «Высокий».

Внешний вид и схемы пломбирования счетчиков различных модификаций представлены на рисунке 1 и рисунке 2.

Позиция 1 и 2 – место установки пломбы эксплуатирующих предприятий.

Рисунок 1 – Внешний вид и схема пломбирования клеммной крышки счетчиков

Позиция 1 – место установки пломбы предприятия-изготовителя. Рисунок 2 – Внешний вид и схема пломбирования прибора на предприятии-изготовителе

Метрологические и технические характеристики

Диапазоны измеряемых величин, а также пределы допускаемых основных погрешностей измерений приведены в таблице 2.

Метрологические характеристики нормированы с учетом влияния программного обеспечения.

Прямое направление передачи энергии соответствует углам сдвига фаз между током и напряжением:

- в диапазонах от 0 до 90° и от 270 до 360° для активной энергии;
- в диапазонах от 0 до 90° и от 90 до 180° для реактивной энергии.

Обратное направление передачи энергии соответствует углам сдвига фаз между током и напряжением:

- в диапазонах от 90 до 180° и от 180 до 270° для активной энергии;
- в диапазонах от 180 до 270 $^{\circ}$ и от 270 до 360 $^{\circ}$ для реактивной энергии.

Таблица 2

		•
Параметр	Значение	Примечание
Фазное / линейное напряжение пе-	57,7/100;	номинальное напряжение
ременного тока $*U$, В		$U_{\text{hom}} = 57.7 \text{ B};$
	(120 - 230)/(208 - 400)	номинальное напряжение
		$U_{\scriptscriptstyle \mathrm{HOM}} = 220~\mathrm{B}$
Диапазон измерения фазно-	от 40 до 120;	при наличии символа «N» в
го / линейного напряжения пере-		части кода счетчика
менного тока, В	от 100 до 288	
Номинальный ток $I_{\text{ном}}$, А	1; 5	максимальный ток 10 А
Диапазон измерения силы пере-	от 0,01 до 10	при наличии символа «N» в
менного тока, А		части кода счетчика
Номинальная частота $f_{\text{ном}}$, Γ ц	50	-

		Всего листов 14
Параметр	Значение	Примечание
Диапазон измерения частоты, Гц	от 47,50 до 52,50	при наличии символа «N» в
		части кода счетчика
Постоянная счетчика	5000 (имп./кВт·ч)	
	для активной энергии,	
	5000 (имп./квар∙ч)	-
	для реактивной энер-	
	гии	
Пределы допускаемой основной	± 0,5	при $I_{\text{ном.}} \leq I_{\text{изм.}} \leq I_{\text{макс}}$
относительной погрешности изме-	- 7-	1 10.00 = 1.00.00 = 1.00.00
рения СКЗ* силы переменного тока		
при времени измерении 200 мс, %	$= \left[0.5 + 0.2 \left(\frac{I_{nom}}{I_{sm}} - I\right)\right]$	при $0.01I_{\text{ном.}} \leq I_{\text{изм.}} \leq I_{\text{ном.}}$
	$igl[I_{\mathfrak{I}_{\mathfrak{I}_{\mathfrak{I}_{\mathfrak{I}_{\mathfrak{I}_{\mathfrak{I}}}}}} igr]$	1
Пределы допускаемой основной		
приведенной погрешности измере-		в диапазоне:
ния СКЗ* фазного и линейного на-	± 0,5	от 40 до 120 В;
пряжения переменного тока при		от 100 до 288 В.
времени измерения 200 мс, %		
Пределы допускаемой основной	± 0,05	в диапазонах
абсолютной погрешности измере-		(минус 0,5 С**) – (минус 1) –
ния коэффициента активной мощ-		(минус 0,5 L**) и
ности		(плюс 0,5 С**) – (плюс 1) –
		(плюс 0,5 L**).
Предел допускаемой основной аб-	± 0,01	время усреднения,
солютной погрешности измерения		не менее 20 с
частоты, Гц		
Предел допускаемой основной аб-		
солютной погрешности суточного		
хода часов реального времени в	± 0,5	-
диапазоне рабочих температур,		
с/сут		
Стартовый ток, А	$0{,}001 \cdot I_{\scriptscriptstyle ext{HOM}}$	при $cos \varphi = 1$ и симметричной
		нагрузке
Количество тарифов / тарифных	8 / 48	-
зон при измерении активной и ре-		
активной энергии		
Время начального запуска до мо-	5	-
мента начала учета электроэнергии,		
не более, с		
Установившееся отклонение на-	± 0.5	
пряжения, %	± 0,5	при наличии символа «Q» в
Отклонение частоты, Гц	± 0,05	части кода счетчика. Харак-
Длительность провала напряжения,	± 40	теристика процесса измере-
мс		ния соответствует классу S
Глубина провала напряжения, %	± 1,0	по ГОСТ 30804.4.30-2013
Длительность перенапряжения, с	± 40	(ΓΟCT P 51317.4.30-2008)
T CYCL	_ : -	<u> </u>

Примечание: СКЗ* - среднеквадратическое значение; $I_{u_{3M.}}$ – измеренное СКЗ силы переменного тока, A; **Знаком «L» обозначена индуктивная нагрузка, знаком «С» – емкостная.

Пределы допускаемой основной относительной погрешности счетчиков при измерении активной энергии и мощности (пофазно и по сумме фаз) прямого и обратного направлений в нормальных условиях при симметричной трехфазной нагрузке не должны превышать значений, указанных в таблице 3.

Таблица 3

Значение тока	Коэффициент мощности $\cos j$	Пределы допускаемой ос новной относительной по грешности, %, для класса точности	
		0,2S	0,5S
От $0,01 \cdot I_{\text{ном.}}$ до $0,05 \cdot I_{\text{ном.}}$	- 1	± 0,4	± 1,0
От $0,05 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$		± 0,2	± 0,5
От $0,02 \cdot I_{\text{ном.}}$ до $0,10 \cdot I_{\text{ном.}}$	0,5 при индуктивной нагруз- ке и 0,8 при емкостной нагрузке	± 0,5	± 1,0
От $0,1$ · $I_{\text{ном.}}$ до $I_{\text{макс.}}$		± 0,3	± 0,6

Примечание – Погрешность измерения активной мощности при токе меньше $0.05 \cdot I_{\text{ном.}}$ и $\cos j = 1$, а также при токе меньше $0.10 \cdot I_{\text{ном.}}$ и $\cos j = 0.5$ (при индуктивной нагрузке) или $\cos j = 0.8$ (при емкостной нагрузке) не нормируется.

Пределы допускаемой основной относительной погрешности счетчиков при измерении реактивной энергии и мощности (усреднение на интервале 4 с) прямого и обратного направлений и полной мощности (пофазно и по сумме фаз) в нормальных условиях при симметричной трехфазной нагрузке не должны превышать значений, указанных в таблице 4.

Пределы допускаемой основной относительной погрешности счетчиков при измерении реактивной и полной мощности (пофазно и по сумме фаз) в нормальных условиях при симметричной трехфазной нагрузке не должны превышать значений, указанных в таблице 4.

Таблица 4

Значение тока	Коэффициент мощности <i>sin j</i> при индуктивной или емкост-	Пределы допускаемой основной относительной погрешности, %, для клас-	
	ной нагрузке	са точности	
		0,5	1
От $0.02 \cdot I_{\text{ном.}}$ до $0.05 \cdot I_{\text{ном.}}$	1	± 0,75	± 1,50
От $0,05 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	1	± 0,50	± 1,00
От $0,05 \cdot I_{\text{ном.}}$ до $0,10 \cdot I_{\text{ном.}}$	0,5	± 0,75	± 1,50
От $0,1$: $I_{\text{ном.}}$ до $I_{\text{макс.}}$	0,3	± 0,50	± 1,00
От $0,1$: $I_{\text{ном.}}$ до $I_{\text{макс.}}$	0,25	± 0,75	± 1,50

Примечание — Погрешность измерения реактивной мощности при токе меньше $0.05 \cdot I_{\text{ном.}}$ и sin j = 1, а также при токе меньше $0.10 \cdot I_{\text{ном.}}$ и sin j = 0.5 (при индуктивной или емкостной нагрузке) не нормируется.

Пределы допускаемой основной относительной погрешности счетчиков при измерении активной энергии и мощности (пофазно и по сумме фаз) в нормальных условиях при однофазной нагрузке и симметрии многофазных напряжений, приложенных к цепям напряжения, не должны превышать значений, указанных в таблице 5.

Таблица 5

Значение тока	Коэффициент мощности $\cos j$	Пределы допус ной относительно %, для класса 0,2S	й погрешности,
От $0,05 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	1	± 0,3	± 0,6
От $0,1\cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	0,5 при индуктивной нагрузке	± 0,4	± 1,0

Пределы допускаемой основной относительной погрешности счетчиков при измерении реактивной энергии при однофазной нагрузке и симметрии многофазных напряжений, приложенных к цепям напряжения, не должны превышать значений, указанных в таблице 6.

Пределы допускаемой основной относительной погрешности счетчиков при измерении реактивной и полной мощности (пофазно и по сумме фаз) при однофазной нагрузке и симметрии многофазных напряжений, приложенных к цепям напряжения, не должны превышать значений, указанных в таблице 6.

Таблица 6

Значение тока	Коэффициент мощности sin j при индуктивной или емкостной нагрузке	Пределы допуск ной относительной %, для класса 0,5	погрешности,
От $0.05 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	1	± 0,75	± 1,50
От $0,1$: $I_{\text{ном.}}$ до $I_{\text{макс.}}$	0,5	± 0,75	± 1,50

Дополнительная относительная погрешность измерения активной энергии прямого и обратного направлений, вызванная изменением напряжения в пределах:

- от $0.8 \cdot U_{\text{ном.}}$ до $1.15 \cdot U_{\text{ном.}}$, при симметричной нагрузке не должна превышать пределов, указанных в таблице 7;
- от 0 В до $0.8 \cdot U_{\text{ном.}}$, при симметричной нагрузке должна находится в пределах от плюс 10 до минус 100 %.

Таблица 7

Значение тока	Коэффициент мощности $\cos j$	носительной п	олнительной от- погрешности, %, са точности 0,5S
От $0.05 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	1	± 0,1	± 0,2
От $0,1 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	0,5 при индуктивной нагрузке	± 0,2	± 0,4

Дополнительная относительная погрешность измерения реактивной энергии прямого и обратного направлений, вызванная изменением напряжения в пределах:

- от $0.8 \cdot U_{\text{ном.}}$ до $1.15 \cdot U_{\text{ном.}}$, при симметричной нагрузке не должна превышать пределов, указанных в таблице 8;
- от 0 В до $0.8 \cdot U_{\text{ном}}$, при симметричной нагрузке должна находится в пределах от плюс 10 до минус 100 %.

Таблица8

Значение тока	Коэффициент мощности <i>sin j</i> при индуктивной или емкостной нагрузке	Пределы дополни носительной погре для класса точ 0,5	шности, %,
От $0,02 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	1	± 0,35	± 0,70
От $0,05 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	0,5	± 0,50	± 1,00

Дополнительная относительная погрешность измерения тока в каждой фазе сети δ_{Iu} , %, вызванная изменением напряжения, не должна превышать пределов допускаемой основной относительной погрешности измерения среднеквадратического значения тока.

Дополнительная относительная погрешность измерения активной энергии прямого и обратного направлений при отклонении частоты сети в пределах ± 5 % от $f_{\text{ном.}}$ не должна превышать пределов, указанных в таблице 9.

Таблица 9

Значение тока	Коэффициент мощности cos j	Пределы дополни носительной погре для класса то	ешности, %,
		для класса точности 0,2S 0,5S	
От $0,05 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	1		
От $0,1 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	0,5 при индуктивной	± 0,1	± 0,2
	нагрузке		

Дополнительная относительная погрешность измерения реактивной энергии прямого и обратного направлений при отклонении частоты сети в пределах ± 5 % от $f_{\text{ном.}}$ не должна превышать пределов, указанных в таблице 10.

Таблица 10

Значение тока	Коэффициент мощности sin j при индуктивной или емкостной нагрузке	Пределы дополнит носительной погрег для класса точ 0,5	шности, %,
От $0.05 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	1	1 0 75	1.1.50
От $0,1\cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	0,5	± 0,75	$\pm 1,50$

Дополнительная относительная погрешность измерения активной энергии прямого и обратного направлений при токах и напряжениях, имеющих последовательность фаз, обратную указанной на схеме включения (этикетка на крышке зажимов), не должна превышать пределов, указанных в таблице 11.

Таблица 11

Значение тока	Коэффициент мощности cos j	Пределы дополнотносительной пограм, для класса то	решности,
	0009	0,2S	0,5S
$0,1\cdot I_{\text{HOM.}}$	1	± 0,05	± 0,10

Дополнительная относительная погрешность измерения активной энергии прямого и обратного направлений, вызванная несимметрией напряжения (прерывание одной или двух фаз), не должна превышать пределов, указанных в таблице 12.

Таблица 12

Значение тока	Коэффициент мощности $\cos j$	Пределы дополните носительной погреш для класса точн 0,2S	иности, %,
$I_{ m HOM.}$	1	± 0,5	± 1,0

Дополнительная относительная погрешность измерения активной энергии прямого и обратного направлений, вызванная влиянием гармоник в цепях тока и напряжения, не должна превышать пределов, указанных в таблице 13.

Таблица 13

Значение тока	Коэффициент мощности $\cos j$	Пределы допол носительной пог для класса т 0,2S	решности, %,
$0.5 \cdot I_{\text{Makc.}}$	1	± 0,4	± 0,5

Дополнительная абсолютная погрешность измерения частоты, вызванная влиянием гармоник в цепях тока и напряжения, не должна превышать $\pm 0.06 \, \Gamma$ ц.

Дополнительная относительная погрешность измерения реактивной энергии прямого и обратного направлений, вызванная магнитной индукцией внешнего происхождения 0,5 мТл, созданной током частоты, одинаковой с частотой подаваемого на счетчики напряжения, при наиболее неблагоприятных фазе тока и направлении вектора магнитной индукции, не должна превышать пределов, указанных в таблице 14.

Таблица 14

Значение тока	Коэффициент мощности sin j при индуктивной или емкостной нагрузке	Пределы дополотносительной по %, для класса то 0,5	грешности,
$I_{ m HOM.}$	1	± 1,0	± 2,0

Активная и полная мощность, потребляемая счетчиками при нормальной температуре и номинальной частоте сети, для каждой цепи напряжения при номинальном напряжении и для каждой цепи тока при номинальном токе, не должны превышать значений, указанных в таблице 15.

Активная и полная мощность, потребляемая счетчиками от резервного источника питания не должна превышать значений, указанных в таблице 15.

Таблица 15

Цепь потребления	Значение активной мощности для каждой цепи, Вт	для каждой і	пной мощности цепи, В·А, при м напряжении (120-230)/ (208-400) В	Наличие канала связи GSM
How ware swayer	1,5	2,50	3,50	Отсутствует
Цепь напряжения	3,0	4,50	5,00	Имеется
Цепь тока	_	0,05		_

по	Цепь требления	Значение активной мощ- ности для каж- дой цепи, Вт	для каждой і	пной мощности цепи, В·А, при м напряжении (120-230)/ (208-400) В	Наличие канала связи GSM
	постоянного тока	4,0		_	Отсутствует
напряжением от 9 до 36 В	9,0	_		Имеется	
цепь переменного тока		3,5	7		Отсутствует
резервного питания	частотой 50 Гц напряжением от 120 до 276 В	7,5	14		Имеется
постоянного то- ка напряжением от 120 до 276 В		3,5	_		Отсутствует
		7,5		_	Имеется

Изменение погрешности счетчиков при измерении активной и реактивной энергии, вызванное возвращением к нормальному включению после замыкания на землю одной из трех фаз, не должно превышать значений, указанных в таблице 16.

Таблица 16

Класс точности счетчика	Пределы изменения погрешности, %
0,2S	± 0,10
0,5S	± 0,30
0,5	± 0,35
1	± 0,70

Средний температурный коэффициент счетчиков в температурных поддиапазонах от минус 40 до плюс $60\,^{\circ}$ С при измерении активной энергии прямого и обратного направлений не должен превышать пределов, указанных в таблице 17.

Таблица 17

Значение тока	Коэффициент мощности <i>cos j</i>	Средний температ при измерении активн сти, %/°С, для счетчи 0,2S	=
От $0.05 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	1,0	± 0,01	± 0,03
От $0,1\cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	0,5 (при индуктив- ной нагрузке)	± 0,02	± 0,05

Средний температурный коэффициент счетчиков в температурных поддиапазонах от минус 40 до плюс 60 °C при измерении реактивной энергии прямого и обратного направлений не должен превышать пределов, указанных в таблице 18.

Таблица 18

Значение тока	Коэффициент мощности <i>sin j</i> при индуктивной или емкостной на-	Средний температу при измерении реакти ности, %/°С, для счетч	-
От 0,05· <i>I</i> _{ном.} до <i>I</i> _{макс.}	грузке 1	± 0,03	± 0,05
От $0,1 \cdot I_{\text{ном.}}$ до $I_{\text{макс.}}$	0,5	± 0,05	± 0,07

Дополнительная погрешность измерения фазных напряжений γ_{Ut} , %, вызванная изменением температуры окружающего воздуха при отклонении от нормального значения температуры t_H , °C, до любого значения t, °C, в пределах рабочих температур не должна превышать значения, вычисленного по формуле

$$\mathbf{g}_{Ut} = 0.05 \cdot \mathbf{g}_U \cdot (t - t_{\scriptscriptstyle H}), \tag{1}$$

где 0.05 – коэффициент, выраженный в $1/^{\circ}$ С;

 γ_U — допускаемая основная приведенная погрешность измерения напряжения переменного тока.

Дополнительная погрешность измерения фазных токов δ_{It} , %, вызванная изменением температуры окружающего воздуха при отклонении от нормального значения температуры t_{H} до любого значения t в пределах рабочих температур, не должна превышать значения, вычисленного по формуле

$$\delta_{tt} = 0.05 \cdot \delta_{t} \cdot (t - t_{u}), \tag{2}$$

где 0.05 – коэффициент, выраженный в $1/^{\circ}$ С;

 δ_I – допускаемая основная относительная погрешность измерения силы переменного тока.

Нормальные условия применения:

- нормальное значение температуры окружающего воздуха плюс 20 °C. Допускаемые отклонения от нормального значения \pm 10 °C;
 - нормальная область значений относительной влажности воздуха от 30 до 80 %;
- нормальная область значений атмосферного давления от 70 до 106,7 кПа (от 525 до 800 мм рт.ст.);
- нормальное значение частоты питающей сети 50 Γ ц. Допускаемые отклонения от нормального значения \pm 0,5 Γ ц.
- нормальное значение напряжение питающей сети переменного тока 220 В. Допускаемые отклонения от нормального значения \pm 4,4 В.
- коэффициент искажения синусоидальности кривой напряжения питающей сети не более 5 %.

Рабочие условия применения:

- температура окружающего воздуха от минус 40 до плюс 60 °C;
- относительная влажность воздуха 90 % при температуре окружающего воздуха плюс 30 °C;

Средняя наработка на отказ не менее 290000 ч.

Средний срок службы не менее 30 лет.

Габаритные размеры (высота \times ширина \times глубина) не более: (285 \times 168 \times 63) мм.

Масса не более 1,5 кг.

Знак утверждения типа

Знак утверждения типа наносят на лицевую панель счетчиков методом шелкографии, на титульные листы формуляра и руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплект поставки счетчиков приведён в таблице 19.

Таблица 19

Обозначение	Наименование	Кол-во	Примечание
M08.112.00.000	Счетчик электрической энергии трехфазный электронный типа МИР С-03	1 шт.	_
_	Комплект эксплуатационных документов	1 компл.	Согласно ведомости эксплуатационных до- кументов М08.112.00.000 ВЭ
M07.00190-02	Программа конфигуратор счетчиков МИР	1 шт.	При отсутствии символа «D» в группе «функции» кода счетчика
M12.00327-01	Программа «КОНФИГУРАТОР ПРИБОРОВ УЧЕТА»	1 шт.	При наличии символа «D» в группе «функции» кода счетчика

Примечания

- 1 Формуляр поставляется в бумажной форме с каждым счетчиком.
- 2 Допускается поставка руководства по эксплуатации, методики поверки, описания применения программы "Программа конфигуратор счетчиков МИР" (файлы в формате pdf) и программы Конфигуратор СЧЕТЧИКОВ МИР или описания применения программы "Программа конфигуратор ПРИБОРОВ УЧЕТА" и программы конфигуратор ПРИБОРОВ УЧЕТА на одном компакт-диске в один адрес на 12 счетчиков или по отдельному заказу.

Поверка

осуществляется в соответствии с документом M08.112.00.000 МП «Счетчики электрической энергии трехфазные электронные типа МИР С-03». Методика поверки», утверждённым Φ ГУП «ВНИИМС» июне 2014 г.

Основные средства поверки и их основные метрологические характеристики приведены в таблице 20.

Таблица 20

Наименование и тип средства поверки	Требуемые характеристики
Установка для поверки счетчиков электрической энергии ЦУ6804М	Γ.P. № 18289-03

Наименование и тип средства поверки	Требуемые характеристики
Мультиметр Agilent 34401A	Γ.P. № 16500-97
Частотомер GFC-8010H	Γ.P. № 19818-00
Калибратор переменного тока	Γ.P. № 31319-12
«Pecypc-K2»	

Сведения о методиках (методах) измерений

приведены в руководстве по эксплуатации М08.112.00.000 РЭ.

Нормативные и технические документы, устанавливающие требования к счетчикам электрической энергии трехфазным электронным типа МИР С-03:

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»

ГОСТ 30804.4.30-2013 (IEC 61000-4-30:2008) «Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии».

ГОСТ 31818.11-2012 (IEC 62052-11:2003) «Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии».

ГОСТ 31819.22-2012 (IEC 62053-22:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0.2S и 0.5S».

ГОСТ 31819.23-2012 (IEC 62053-23:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Счетчики статические реактивной энергии»

ТУ 4228-003-51648151-2009 «Счетчики электрической энергии трехфазные электронные МИР С-03». Технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение государственных учетных операций и осуществление торговли.

Изготовитель

Общество с ограниченной ответственностью «Научно-производственное объединение «МИР» (ООО НПО «МИР»), г. Омск.

Адрес: 644105, Россия, г. Омск, ул. Успешная, 51

Телефоны: 8-(3812) 61-90-82, 61-99-74

Факс: 8-(3812) 61-81-76 E-mail: <u>help@mir-omsk.ru</u> http://<u>www.mir-omsk.ru</u>

Заявитель

Общество с ограниченной ответственностью «Сервис-Метрология» (ООО «Сервис-Метрология»), г. Москва.

Адрес: 119119, г. Москва, Ленинский пр-т, 42, 1-2-3

Тел.: (499) 755-63-32; Факс: (499) 755-63-32 E-mail: s_shilov@inbox.ru, info@s-metr.ru

Web-сайт: www.s-metr.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66; E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. « » 2014 г.