ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «КриоГаз»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «КриоГаз» (далее - АИИС КУЭ) предназначена для измерения активной и реактивной энергии, а также для автоматизированного сбора, обработки, хранения, отображения и передачи информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень состоит из измерительных трансформаторов тока (далее - TT) класса точности 0,2S и 0,5 по ГОСТ 7746-2001, измерительных трансформаторов напряжения (далее - TH) класса точности 0,5 по ГОСТ 1983-2001 и счетчиков активной и реактивной электроэнергии типа СЭТ-4ТМ.03М.01, СЭТ-4ТМ.03М, ПСЧ-4ТМ.05МК.16 и СЭТ-4ТМ.03 класса точности 0,2S и 0,5S по ГОСТ Р 52323-05 и ГОСТ 30206-94 в части активной электроэнергии и 0,5 и 1,0 по ГОСТ Р 52425-2005 и ГОСТ 26035-83 в части реактивной электроэнергии, вторичных измерительных цепей и технических средств приема-передачи данных.

Счетчики электрической энергии обеспечены энергонезависимой памятью для хранения профиля нагрузки с получасовым интервалом на глубину не менее 35 суток, данных по активной и реактивной электроэнергии с нарастающим итогом за прошедший месяц, а также запрограммированных параметров.

- 2-й уровень информационно вычислительный комплекс (далее ИВК), расположенный в серверной ООО «Крио Γ аз», обеспечивающий выполнение следующих функций:
 - сбор информации от счетчиков АИИС КУЭ (результаты измерений, журнал событий);
 - обработку данных и их архивирование;
 - хранение информации в базе данных сервера ООО «КриоГаз»;
- доступ к информации и ее передачу в организации участники оптового рынка электроэнергии (далее OPЭ) и другие заинтересованные организации;
- передача информации в формате XML на сервер информационно вычислительного комплекса ООО «ЕЭС.Гарант» (далее ИВК ООО «ЕЭС.Гарант»);
 - передача информации в ОАО «АТС».

ИВК состоит из серверов сбора и базы данных, устройства синхронизации времени, автоматизированных рабочих мест (далее - APM) персонала и программного обеспечения (далее - ПО) «Энергосфера».

Измерительные каналы (далее – ИК) АИИС КУЭ включает в себя 1-й и 2-й уровни АИИС КУЭ.

Первичные фазные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. Измерительная часть счетчиков выполнена на основе многоканального, шестнадцатиразрядного аналого-цифрового преобразователя (АЦП). АЦП осуществляет выборки мгновенных значений величин напряжения и тока по шести каналам измерения, преобразование их в цифровой код и передачу по скоростному последовательному каналу микроконтроллера. Микроконтроллер по выборкам мгновенных значений напряжения и тока производит вычисление средних за период сети значений

частоты, напряжения, тока активной и полной мощности в каждой фазе сети, производит их коррекцию по амплитуде, фазе и температуре. Счетчики имеют жидкокристаллический индикатор для отображения учетной энергии и измеряемых величин.

ИВК автоматически опрашивает счетчики АИИС КУЭ. В ИВК информация о результатах измерений приращений потребленной электрической энергии автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру. Сформированные архивные файлы автоматически сохраняются на «жестком» диске.

ИВК автоматически формирует файл отчета с результатами измерений, в формате XML, и автоматически передает его в интегрированную автоматизированную систему управления коммерческим учетом (далее - ИАСУ КУ) ОАО «АТС».

Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

Система обеспечения единого времени (далее - СОЕВ) выполняет законченную функцию измерений времени и формируется на всех уровнях АИИС КУЭ.

Контроль времени в часах счетчиках АИИС КУЭ автоматически выполняет ИВК, при каждом сеансе опроса (один раз в 30 минут), корректировка часов счетчиков выполняется автоматически в случае расхождения времени часов в счетчике и ИВК на величину более ± 1 с.

Корректировка часов ИВК выполняется автоматически, от устройства синхронизации времени УСВ -3 (Госреестр № 51644-12). В комплект УСВ -3 входят антенный блок для наружной установки и блок питания с интерфейсами. Корректировка часов ИВК происходит ежесекундно.

Погрешность часов компонентов системы не превышает ±5 с.

Защита от несанкционированного доступа предусмотрена на всех уровнях сбора, передачи и хранения коммерческой информации и обеспечивается совокупностью технических и организационных мероприятий.

Журналы событий счетчика электроэнергии и ИВК отражают время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах, корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Программное обеспечение

Таблица 1 – Идентификационные данные ПО «Энергосфера», установленного в ИВК

Идентификацион- ное наименование программного обеспечения	і (илентитикани.	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вы- числения цифро- вого идентифи- катора про- граммного обес- печения
Библиотека pso_metr.dll	1.1.1.1	cbeb6f6ca69318bed976e08a2bb7814b	MD5
PSO.exe	7.0.50.4307	1736ee4e1cfec966e6827018c848c2cd	MD5
expimp.exe	7.0.89.3470	78c0668585c7cc02052f7ee49d6e74d1	MD5
ControlAge.exe	7.0.92.2275	ecfc63edde011188da4ce0bab94f18b7	MD5
AdCenter.exe	7.0.86.1336	6fa313bd7f5b4a6652fa722bcff3459a	MD5
AdmTool.exe	7.0.16.6254	73ad73ac9420348d73da0cc3c7887906	MD5

Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3 и 4 нормированы с учетом ПО.

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя. Уровень защиты — «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав 1-го уровня ИК приведен в таблице 2, метрологические характеристики ИК в таблицах 3 и 4.

Таблица 2 – Состав 1-го уровня ИК

1 a	блица 2 – Состав				
		Из			
Номер ИК	Наименование объекта	TT	ТН	Счетчик	Вид электро- энергии
1	ПС 46 6/0,4 кВ; РУ – 6 кВ; 1 с. ш. 6 кВ; ячейка № 5	ТОЛ-СЭЩ-10 Госреестр № 32139-06 Кл. т. 0,5 1200/5 Зав. № 25376-08 - Зав. № 25368-08	ЗНОЛП-6 Госреестр № 23544-07 Кл. т. 0,5 6000:√3/100:√3 Зав. № 4844 Зав. № 3747 Зав. № 3762	СЭТ-4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0809135447	
2	ПС 46 6/0,4 кВ; РУ – 6 кВ; 1 с. ш. 6 кВ; ТСН – 1 0,4 кВ	ТШП — 0,66 Госреестр № 47957-11 Кл. т. 0,5 100/5 Зав. № 4055409 Зав. № 4055387 Зав. № 4055404	-	ПСЧ-4ТМ.05МК.16 Госреестр № 46634-11 Кл. т. 0,5S/1,0 Зав. № 1112137615	
3	ПС 46 6/0,4 кВ; РУ – 6 кВ; 2 с. ш. 6 кВ; ячейка № 17	ТОЛ-СЭЩ-10 Госреестр № 32139-06 Кл. т. 0,5 1200/5 Зав. № 25369-08 - Зав. № 25370-08	ЗНОЛП-6 Госреестр № 23544-07 Кл. т. 0,5 6000:√3/100:√3 Зав. № 3707 Зав. № 3842 Зав. № 3806	СЭТ-4ТМ.03М.01 Госреестр № 36697-12 Кл. т. 0,5S/1,0 Зав. № 0810135154	активная, реактивная
4	ПС 46 6/0,4 кВ; РУ – 6 кВ; 2 с. ш. 6 кВ; ТСН – 2 0,4 кВ	ТШП – 0,66 Госреестр № 47957-11 Кл. т. 0,5 100/5 Зав. № 4042612 Зав. № 4042618 Зав. № 4042583	-	ПСЧ-4ТМ.05МК.16 Госреестр № 46634-11 Кл. т. 0,5S/1,0 Зав. № 1112137661	
5	ГПП – 2 ПС 110/6 кВ Северская; РУ – 6 кВ; 4 с. ш. 6 кВ; яч. № 57	ТОЛ-10-I Госреестр № 15128-07 Кл. т. 0,2S 1000/5 Зав. № 34551 - Зав. № 17268	ЗНОЛП-6 Госреестр № 23544-07 Кл. т. 0,5 6000:√3/100:√3 Зав. № 3796 Зав. № 3862 Зав. № 3658	СЭТ-4ТМ.03М Госреестр № 36697-12 Кл. т. 0,2S/0,5 Зав. № 0812137668	

Окончание таблицы 2

	ончание таолицы	Измерительные компоненты							
Номер ИК	Наименование объекта				Вид электро- энергии				
6	ГПП – 2 ПС 110/6 кВ Северская; РУ – 6 кВ; 3 с. ш. 6 кВ; яч. № 73	ТОЛ-10-I Госреестр № 15128-07 Кл. т. 0,2S 1000/5 Зав. № 34552	ЗНОЛП-6 Госреестр № 23544-07 Кл. т. 0,5 6000:√3/100:√3 Зав. № 7124 Зав. № 7118 Зав. № 7142	СЭТ-4ТМ.03М Госреестр № 36697-12 Кл. т. 0,2S/0,5 Зав. № 0812137778					
7	ПС ЦРВ 6/0,4 кВ; РУ – 6 кВ; 1 с. ш. 6 кВ; ячейка № 9; ф. Ввод 1	6/0,4 кВ; № 15128-07 № 23544-07 Госр Кл. т. 0,5 РУ – 6 кВ; Кл. т. 0,5 Кл. т. 0,5 Кл. т. 0,5 1 с. ш. 6 кВ; 1500/5 6000:√3/100:√3 Кл. т. 3ав. № 2321 3ав. № 22280 3ав. № 3321 3ав. № 0		СЭТ-4ТМ.03 Госреестр № 27524-04 Кл. т. 0,2S/0,5 Зав. № 0111080158					
8	ПС ЦРВ 6/0,4 кВ; РУ – 6 кВ; 1 с. ш. 6 кВ; ТСН – 1 0,4 кВ; ячейка № 11	ТШП – 0,66 Госреестр № 47957-11 Кл. т. 0,5 100/5 Зав. № 4055383 Зав. № 4055389 Зав. № 4055394	-	ПСЧ-4ТМ.05МК.16 Госреестр № 46634-11 Кл. т. 0,5S/1,0 Зав. № 1112137686	активная, реактивная				
9	ПС ЦРВ 6/0,4 кВ; РУ – 6 кВ; 2 с. ш. 6 кВ; ячейка № 16; ф. Ввод 2	ТОЛ-10-I Госреестр № 15128-07 Кл. т. 0,5 1500/5 Зав. № 21491 - Зав. № 21767	ЗНОЛП-6 Госреестр № 23544-07 Кл. т. 0,5 6000:√3/100:√3 Зав. № 3307 Зав. № 3316 Зав. № 3325	СЭТ-4ТМ.03 Госреестр № 27524-04 Кл. т. 0,2S/0,5 Зав. № 0111080045					
10	ПС ЦРВ 6/0,4 кВ; РУ – 6 кВ; 2 с. ш. 6 кВ; ТСН – 2 0,4 кВ; ячейка № 18	ТШП – 0,66 Госреестр № 47957-11 Кл. т. 0,5 100/5 Зав. № 4043245 Зав. № 4042577 Зав. № 4043246	-	ПСЧ-4ТМ.05МК.16 Госреестр № 46634-11 Кл. т. 0,5S/1,0 Зав. № 1112137693					

Таблица 3 – Метрологические характеристики ИК АИИС КУЭ (активная энергия)

	1	Метрологические характеристики ИК								
Номер ИК	Диапазон значений силы тока	Основная относительная погрешность ИК, $(\pm d)$, %				ИК в	гносительная погрешность К в рабочих условиях экс- плуатации, (±δ), %			
	CHIBI TORU	$\cos \varphi = 1.0$	$\cos \varphi = 0.87$	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	$\cos \varphi = 1.0$	$\cos \varphi = 0.87$	$\cos \varphi = 0.8$	$\cos \varphi$ = 0,5	
1	2	3	4	5	6	7	8	9	10	
	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	1,8	2,5	2,9	5,5	2,3	2,9	3,3	5,8	
1, 3	$0.2I_{H_1} \le I_1 < I_{H_1}$	1,2	1,5	1,7	3,0	1,8	2,1	2,2	3,5	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	1,0	1,2	1,3	2,3	1,7	1,9	2,0	2,8	
	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	1,7	2,4	2,8	5,4	2,2	2,8	3,2	5,6	
2, 4, 8, 10	$0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$	1,0	1,3	1,5	2,7	1,7	1,9	2,1	3,2	
	$I_{H_1} \le I_1 \le$ $1,2I_{H_1}$	0,8	1,0	1,1	1,9	1,6	1,7	1,8	2,5	
	$0.02 \mathrm{Ih}_1 \le \mathrm{I}_1 < 0.05 \mathrm{Ih}_1$	1,0	1,2	1,3	2,1	1,2	1,4	1,5	2,3	
5, 6	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	0,8	0,9	1,0	1,7	1,0	1,1	1,2	1,8	
3, 0	$0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$	0,7	0,8	0,9	1,4	0,9	1,0	1,1	1,6	
	Ін ₁ ≤ І ₁ ≤ 1,2Ін ₁	0,7	0,8	0,9	1,4	0,9	1,0	1,1	1,6	
7, 9	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	1,8	2,4	2,8	5,4	1,9	2,5	2,9	5,5	
	$0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$	1,1	1,4	1,6	2,9	1,2	1,5	1,7	3,0	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	0,9	1,1	1,2	2,2	1,1	1,3	1,4	2,3	

Таблица 4 – Метрологические характеристики ИК АИИС КУЭ (реактивная энергия)

		Метрологические характеристики ИК						
Номер ИК	Диапазон значений силы тока	Основная относительная погрешность ИК, $(\pm d)$, %			ность И	сительная погреш- ИК в рабочих усло- сплуатации, $(\pm d)$, %		
		$\cos \varphi = 0.87$	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	$\cos \varphi = 0.87$	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	
		$(\sin \varphi = 0.5)$	$(\sin \varphi = 0,6)$	$(\sin \varphi = 0.87)$	$(\sin \varphi = 0.5)$	$(\sin \varphi = 0.6)$	$ \begin{array}{c} (\sin \varphi = \\ 0.87) \end{array} $	
1	2	3	4	5	6	7	8	
1, 3	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	5,7	4,6	2,7	6,5	5,5	4,0	
	$0.2\mathrm{Ih}_1 \leq I_1 < \mathrm{Ih}_1$	3,2	2,6	1,8	4,5	4,0	3,4	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	2,5	2,1	1,5	4,0	3,7	3,2	

Окончание таблицы 4

		Метрологические характеристики ИК						
Номер ИК	Диапазон значений		ия относи пость ИК,		ность И	сительная погреш- AK в рабочих усло- сплуатации, ($\pm d$), %		
Помер их	силы тока	$\cos \varphi = 0.87$	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	$\cos \varphi = 0.87$	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	
		$(\sin \varphi = 0,5)$	$(\sin \varphi = 0.6)$	$(\sin \varphi = 0.87)$	$(\sin \varphi = 0.5)$	$(\sin \varphi = 0.6)$	$ \sin \varphi = 0.87) $	
1	2	3	4	5	6	7	8	
	$0.05 I_{\rm H_1} \le I_1 < 0.2 I_{\rm H_1}$	5,6	4,4	2,6	6,4	5,4	3,9	
2, 4, 8, 10	$0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$	2,9	2,4	1,6	4,3	3,9	3,3	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	2,1	1,8	1,3	3,8	3,5	3,2	
	$0.02I_{\rm H_1} \le I_1 < 0.05I_{\rm H_1}$	2,4	2,0	1,6	2,9	2,6	2,1	
5, 6	$0.05 I_{\text{H}_1} \le I_1 < 0.2 I_{\text{H}_1}$	1,9	1,6	1,1	2,6	2,3	1,8	
	$0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$	1,6	1,3	1,0	2,3	2,1	1,7	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	1,6	1,3	1,0	2,3	2,1	1,7	
7, 9	$0.05 \text{IH}_1 \le I_1 < 0.2 \text{IH}_1$	5,8	4,7	2,9	6,4	5,2	3,6	
	$0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$	3,2	2,6	1,8	3,7	3,2	2,5	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	2,5	2,1	1,5	3,0	2,7	2,3	

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
 - 3. Нормальные условия:
 - параметры питающей сети: напряжение (220 ± 4.4) B; частота (50 ± 0.5) Гц;
- параметры сети: диапазон напряжения (0.98-1.02)Uн; диапазон силы тока (1.0-1.2)Ін; коэффициент мощности $\cos \phi (\sin \phi) 0.87(0.5)$; частота (50 ± 0.5) Γ ц;
- температура окружающего воздуха: TT от 15 °C до 35 °C; TH от 15 °C до 35 °C; счетчиков: от 21 °C до 25 °C; ИВК от 15 °C до 25 °C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 ± 4) кПа.
 - 4. Рабочие условия эксплуатации:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения (0,9-1,1)Uн1; диапазон силы первичного тока $(0,02\ (0,05)\ -\ 1,2)$ Iн1; диапазон коэффициента мощности $\cos\phi\ (\sin\phi)\ 0,5\ -\ 1,0\ (0,6-0,87)$; частота $(50\pm0,5)\ \Gamma_{\rm II}$;
 - температура окружающего воздуха от минус 35°C до 35°C;
 - относительная влажность воздуха (70 ± 5) %;
 - атмосферное давление (100 ± 4) кПа.

Для электросчетчиков:

- параметры сети: диапазон вторичного напряжения (0,9-1,1)Uн2; диапазон силы вторичного тока (0,01-1,2)Iн2; диапазон коэффициента мощности $\cos \varphi (\sin \varphi) \ 0,5-1,0 \ (0,6-0,87)$; частота $(50\pm0,5)\ \Gamma$ ц;
 - магнитная индукция внешнего происхождения 0,5 мТл;
 - температура окружающего воздуха от 0 °C до 35 °C;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100 ± 4) кПа.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 ± 10) В; частота (50 ± 1) Гц;
- температура окружающего воздуха от 10 °C до 30 °C;
- относительная влажность воздуха (70 \pm 5) %;
- атмосферное давление (100 ± 4) кПа
- 5. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблипе 2.

Надежность применяемых в АИИС КУЭ компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- счетчик среднее время наработки на отказ: для счетчиков типа СЭТ-4ТМ.03М.01, СЭТ-4ТМ.03М и ПСЧ-4ТМ.05МК.16 не менее 165000 ч; среднее время восстановления работоспособности 2 ч; для счетчиков типа СЭТ-4ТМ.03 не менее 90000 ч; среднее время восстановления работоспособности 2 ч;
- сервер среднее время наработки на отказ не менее 45000 ч, среднее время восстановления работоспособности 1 ч.

Надежность системных решений:

- резервирование питания ИВК с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;

В журналах событий счетчика фиксируются факты:

- параметрирование;
- пропадания напряжения;
- коррекции времени;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;

Защита на программном уровне информации при хранении, передаче, параметрирование:

- пароль на счетчике;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях при отключении питания: для счетчиков АИИС КУЭ – не менее 30 лет;
- ИВК результаты измерений, состояние объектов и средств измерений не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) ООО «КриоГаз» типографическим способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 – Комплектность АИИС КУЭ

Наименование (обозначение) изделия	Количество (шт.)	
Трансформаторы тока ТОЛ-СЭЩ-10	4	
Трансформаторы тока шинные ТШП – 0,66	12	
Трансформаторы тока ТОЛ-10-І	8	
Трансформаторы напряжения ЗНОЛП-6	18	
Счетчики электрической энергии многофункциональные СЭТ- 4TM.03M.01	2	
Счетчики электрической энергии многофункциональные ПСЧ- 4TM.05MK.16	4	
Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М	2	
Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03	2	
Устройство синхронизации времени УСВ-3	1	
ПО «Энергосфера»	1	
Методика поверки	1	
Паспорт-формуляр	1	
Инструкция по эксплуатации	1	

Поверка

осуществляется по документу МП 58161-14 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «КриоГаз». Методика поверки», утвержденному ФГУП «ВНИИМС» в июле 2014 года.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчик СЭТ-4ТМ.03М.01 и СЭТ-4ТМ.03М в соответствии документом «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.145РЭ1, утвержденному руководителем ГЦИ СИ ФБУ «Нижегородский ЦСМ» «04» мая 2012 г.;
- счетчик ПСЧ-4ТМ.05МК.16 в соответствии с документом «Счетчик электрической энергии многофункциональный ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.167РЭ1, утвержденному руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» «21» марта $2011\ \Gamma$.;
- счетчик СЭТ-4ТМ.03 в соответствии с методикой поверки ИЛГШ.411152.124 РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.124 РЭ. Методика поверки согласована с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10 октября 2004 г.;
- УСВ-3 в соответствии с документом «Инструкция. Устройства синхронизации времени УСВ-3. Методика поверки. ВЛСТ.240.00.000МП», утвержденным руководителем ГЦИ СИ ФГУП «ВНИИФТРИ» в 2012 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками АИИС КУЭ и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «КриоГаз», свидетельство об аттестации методики измерений № 01.00225/206-169-14 от 21.07.2014 г.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «КриоГаз»

 Γ ОСТ Р 8.596-2002« Γ СИ. Метрологическое обеспечение измерительных систем. Основные положения».

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли.

Изготовитель

ООО «ЕЭС. Гарант»

Юридический адрес: 143421, Московская область, Красногорский район, 26 км. автодороги

«Балтия», комплекс ООО «ВегаЛайн», строение 3

Почтовый адрес: 143421, Московская область, Красногорский район, 26 км автодороги «Бал-

тия», комплекс ООО «ВегаЛайн», строение 3. Тел./ факс: +7 (495) 980-59-00/+7 (495) 980-59-08

Заявитель

ООО «ЕвроМетрология»

Юридический/почтовый адрес: 140000, Московская область, Люберецкий район,

г. Люберцы, ул. Красная, д. 4.

Тел. +7 (926) 786-90-40

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС») Юридический адрес:

119361, Москва, ул. Озерная, д. 46

Тел./факс: +7 (495) 437-55-77 / 437-56-66;

E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. « » 2014 г.