ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Приемоиндикаторы возимые «ГРОТ-В» (индекс 14Ц821)

Назначение средства измерений

Приемоиндикаторы возимые «ГРОТ-В» (индекс 14Ц821) (далее – аппаратура) предназначены для измерения текущих навигационных параметров по сигналам космических навигационных систем ГЛОНАСС и GPS и определения на их основе координат, скорости в абсолютном и дифференциальном режимах, а также для синхронизации внутренней шкалы времени к шкалам системного времени ГЛОНАСС и GPS, шкалам координированного времени UTC(SU) и UTC.

Описание средства измерений

Принцип действия аппаратуры основан на параллельном приеме и обработке 12-ю измерительными каналами сигналов навигационных космических аппаратов. Аппаратура обеспечивает формирование измерительной информации по сигналам стандартной (СТ) и высокой (ВТ) точности системы ГЛОНАСС, по сигналам С/А-кода (coarse/acquisition) системы GPS в частотном диапазоне L1.

Конструктивно аппаратура состоит из блока электронного и модуля антенного.

Блок электронный (ПИ) обеспечивает обработку сигналов навигационных космических аппаратов систем ГЛОНАСС и GPS, измерения радионавигационных параметров и выдачу навигационных определений потребителю. На передней панели корпуса блока электронного установлен модуль клавиатуры, модуль индикаторный и основные органы управления. На задней панели корпуса блока электронного имеются разъемы для подключения антенного кабеля, внешнего источника питания и разъем для информационного обмена с внешними устройствами по интерфейсу RS-232C.

Модуль антенный (MA3) предназначен для приема, усиления, фильтрации сигналов навигационных космических аппаратов систем ГЛОНАСС и GPS и передачи их по антенному кабелю в блок электронный.

Аппаратура обеспечивает определение координат в системах координат СК-42 (Балтийская система высот), СК-95, WGS-84, ПЗ-90.

Навигационные определения выдаются в формате BIN и текстовом формате, дифференциальные поправки принимаются в формате RTCM SC-104.

Внешний вид аппаратуры, место нанесения наклейки «Знак утверждения типа» и схема пломбировки аппаратуры от несанкционированного доступа приведены на рисунке 1.

Рисунок 1 - Внешний вид аппаратуры, место нанесения наклейки «Знак утверждения типа» и схема пломбировки

- ◆ Место нанесения наклейки «Знак утверждения типа»
- Места пломбировки от несанкционированного доступа

Программное обеспечение

Программное обеспечение (ПО) «ПО плат НП16К, НП16КР» предназначено для управления режимами работы аппаратуры и отображения навигационной информации.

Метрологически значимая часть ПО и измеренные данные не требуют специальных средств защиты от преднамеренных и непреднамеренных изменений.

Идентификационные данные (признаки) ПО приведены в таблице 1.

Таблица 1

Наименование	Идентифика-	Номер версии	Цифровой	Алгоритм	
ПО	ционное	(идентификационный	идентификатор ПО	вычисления	
	наименование	номер) ПО	(контрольная	цифрового	
	ПО		сумма)	идентификатора	
				ПО	
ПО плат НП16К,	ЦДКТ.00212-01	11.11.11	-	-	
НП16КР	ДЭ	не ниже			

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «А» по МИ 3286-2010.

Метрологические и технические характеристики

Метрологические и технические характеристики аппаратуры приведены в таблице 2. Таблица 2

Наименование параметра или характеристики	Значение
	характеристики
Границы погрешности (по уровню вероятности 0,997) определения	
координат при работе по сигналам КНС ГЛОНАСС, GPS, ГЛОНАСС/GPS, м	± 30

Границы погрешности (по уровню вероятности 0,997) измерения	
составляющих вектора скорости, м/с	$\pm 0,05$
Границы инструментальной погрешности (по уровню вероятности 0,997)	
синхронизации внутренней шкалы времени к шкалам системного времени	
ГЛОНАСС и GPS, шкале координированного времени UTC (SU), нс	± 200
Потребляемая мощность по цепи постоянного тока, Вт, не более	6
Габаритные размеры (длина × ширина × высота), мм, не более:	
- блок электронный ПИ	$205 \times 100 \times 75$
- модуль антенный МАЗ	$101 \times 101 \times 99$
Масса, кг, не более:	
- блок электронный ПИ	1,42
- модуль антенный МАЗ	0,44
Рабочие условия эксплуатации:	
блок электронный ПИ:	
- температура окружающей среды, °С	от минус 40 до 55;
модуль антенный МАЗ:	
- температура окружающей среды, °С	от минус 50 до 55.

Знак утверждения типа

Знак утверждения типа средства измерений наносится типографским способом на титульный лист руководства по эксплуатации и на переднюю панель блока электронного в виде наклейки.

Комплектность средства измерений

Комплект поставки включает:

- приемоиндикатор возимый «ГРОТ-В» (индекс 14Ц821) 1 шт.;
- комплект $3И\Pi 1$ комплект.;
- комплект упаковочный 1 шт.;
- комплект эксплуатационной документации 1 шт.

Поверка

осуществляется в соответствии с документом 651-13-57 МП «Инструкция. Приемоиндикаторы возимые «ГРОТ-В» (индекс 14Ц821). Методика поверки», утвержденным Φ ГУП «ВНИИ Φ ТРИ» в декабре 2013 г.

Основные средства поверки:

- частотомер электронно-счетный вычислительный Ч3-64, г/р № 9135-83, диапазон измеряемых частот от $0.005 \, \Gamma$ ц до $1 \, \Gamma$ ц, относительная погрешность по частоте $\pm \, 5 \cdot 10^{-7}$;
- имитатор сигналов СН-3803M, г/р № 36528-07, предел допускаемого среднего квадратического отклонения случайной составляющей погрешности формирования беззапросной дальности до НКА КНС ГЛОНАСС и GPS по фазе дальномерного кода 0,1 м.

Сведения о методиках (методах) измерений

Приемоиндикатор возимый «ГРОТ-В» (индекс 14Ц821). Руководство по эксплуатации ЦДКТ.464316.448 РЭ.

Нормативные и технические документы, устанавливающие требования к приемоиндикаторам возимым «ГРОТ-В» (индекс 14Ц821)

Приемоиндиктор возимый «ГРОТ-В» (индекс 14Ц821). Технические условия. ЦДКТ.464316.448 ТУ

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Приемоиндикаторы возимые «ГРОТ-В» (индекс 14Ц821) используются для измерения текущих навигационных параметров по сигналам космических навигационных систем ГЛОНАСС и GPS и определения на их основе координат, скорости в абсолютном и дифференциальном режимах, а также для синхронизации внутренней шкалы времени к шкалам системного времени ГЛОНАСС и GPS, шкалам координированного времени UTC(SU) и UTC в случаях, предусмотренных законодательством Российской Федерации о техническом регулировании.

Изготовитель

Открытое акционерное общество «Научно-исследовательский институт космического приборостроения» (ОАО «НИИ КП»), г. Москва

Юридический адрес: 111250, г. Москва, ул. Авиамоторная, 53 Почтовый адрес: 111250, г. Москва, ул. Авиамоторная, 53

Телефон: (495) 673-93-03, 673-96-94

Факс: (495) 673-47-19

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» ($\Phi \Gamma \Psi \Pi$ «ВНИИ $\Phi TPИ$ »)

Юридический адрес: 141570, Московская обл., Солнечногорский р-н, городское поселение Менделеево, Главный лабораторный корпус

Почтовый адрес: 141570, Московская обл., Солнечногорский р-н, п/о Менделеево

Телефон: (495) 744-81-12, факс: (495) 744-81-12

E-mail: office@vniiftri.ru

Аттестат аккредитации $\Phi \Gamma \Psi \Pi$ «ВНИИ $\Phi T P \Pi$ » по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель				
Руководителя Федерального				
агентства по техническому				Ф.В. Булыгин
регулированию и метрологии				
	Μπ	"	>>	2014