ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности ЗАО «Доринда», Торговый комплекс

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности ЗАО «Доринда», Торговый комплекс (далее АИИС КУЭ) предназначена для измерения активной и реактивной электрической энергии и мощности, потребленной отдельными технологическими объектами торгового комплекса ЗАО «Доринда» (по адресу: г. Санкт-Петербург, пр-т Просвещения, д. 80, корп. 2, лит. А), сбора, обработки, хранения полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в 30 мин., 1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- предоставление по запросу контрольного доступа к результатам измерений данных о состоянии средств измерений со стороны организаций-участников розничного рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
 - диагностика функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
 - ведение единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень уровень измерительно-информационных комплексов точек измерений (ИИК ТИ), включающий:
 - измерительные трансформаторы тока (ТТ);
 - вторичные измерительные цепи;
 - многофункциональные электронные счетчики электрической энергии.
 - 2-й уровень уровень информационно-вычислительного комплекса (ИВК), включающий:
- Центр сбора и обработки информации ЗАО «Доринда», Торговый комплекс (далее ЦСОИ);
 - программное обеспечение (далее ПО) «АльфаЦЕНТР»;
 - технические средства приема-передачи данных (каналообразующая аппаратура).

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. Счетчик производит измерение действующих (среднеквадратических) значений напряжения (U) и тока и (I) рассчитывает полную мощность $S = U \cdot I$.

Измерение активной мощности счетчиком выполняется путем перемножения мгновенных значений сигналов напряжения (U) и тока (I) и интегрирования полученных значений мгновенной мощности (P) по периоду основной частоты сигналов.

Реактивная мощность (Q) рассчитывается в счетчике по алгоритму $Q = (S^2 - P^2)^{0.5}$.

Средние значения активной и реактивной мощностей рассчитываются путем интегрирования текущих значений Р и Q на 30-минутных интервалах времени.

Цифровой сигнал с выходов счетчиков по проводным линиям поступает на верхний уровень системы.

На верхнем – втором уровне системы выполняется последующее формирование и хранение поступающей информации, оформление справочных и отчетных документов.

Передача результатов измерений и данных о состоянии средств измерений внешним организациям осуществляется по основному каналу телефонной сети общего пользования и по резервному каналу GSM связи.

Коррекция часов счетчиков производится от часов сервера БД ОАО «Петербургская сбытовая компания» в ходе опроса. Коррекция выполняется автоматически, если расхождение часов сервера БД и часов счетчиков АИИС КУЭ превосходит ± 2 с.

Журнал событий счетчиков электрической энергии отражает: время (дата, часы, минуты) коррекции часов указанных в момент непосредственно предшествующий корректировке.

Состав измерительных каналов приведен в табл. 1.

Таблица 1

		Состав измерительного канала			
Номер ИК	Наименование объекта	Трансформатор тока	Счетчик электрической энергии	Оборудо- вание ИВК (2-й уровень)	
1	2	3	4	5	
1	ГРЩ-1 Ввод 1	ТШП-0,66; 800/5; КТ 0,5S, ГОСТ 7746-2001; Госреестр СИ № 47957-11; зав. № 2101037, 2101035, 2037153	ЕвроАльфа, EA05RAL-B-4; Іном (Імакс) = 5 (10) A; Ином = 380 B; КТ: по активной энергии – 0,5S, по реактивной – 1,0; ГОСТ Р 52323-2005, ГОСТ Р 52425-2005; Госреестр СИ № 16666-07; зав. № 01150617	ая аппаратура, гьфаЦЕНТР»	
2	ГРЩ-1 Ввод 2	ТШП-0,66; 800/5;КТ 0,5S, ГОСТ 7746-2001; Госреестр СИ № 47957-11; зав. № 2043505, 2043506, 2043504	ЕвроАльфа, EA05RAL-B-4; Іном (Імакс) = 5 (10) A; Uном = 380 B; КТ: по активной энергии – 0,5S, по реактивной – 1,0; ГОСТ Р 52323-2005, ГОСТ Р 52425-2005; Госреестр СИ № 16666-07; зав. № 01150616		
3	ГРЩ-2 Ввод 1	ТШП-0,66; 800/5; КТ 0,5S, ГОСТ 7746-2001; Госреестр СИ № 47957-11; зав. № 2101047, 2101046, 2101041	ЕвроАльфа, EA05RAL-B-4; Іном (Імакс) = 5 (10) А; Uном = 380 В; КТ: по активной энергии – 0,5S, по реактивной – 1,0; ГОСТ Р 52323-2005, ГОСТ Р 52425-2005; Госреестр СИ № 16666-07; зав. № 01150619	Кан	

Продолжение таблицы 1

1	2	3	4	5
4	ГРЩ-2 Ввод 2	ТШП-0,66; 800/5; КТ 0,5S, ГОСТ 7746-2001; Госреестр СИ № 47957-11; зав. № 2101040, 2101038, 2101042	ЕвроАльфа, EA05RAL-B-4; Іном (Імакс) = 5 (10) A; Uном = 380 B; КТ: по активной энергии – 0,5S, по реактивной – 1,0; ГОСТ Р 52323-2005, ГОСТ Р 52425-2005; Госреестр СИ № 16666-07; зав. № 01150618	Каналообразующая аппаратура, ЦСОИ, ПО «АльфаЦЕНТР»

Примечание – Допускается замена измерительных трансформаторов, счетчиков на аналогичные, утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в табл. 1. Замена оформляется актом. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР».

ПО «АльфаЦЕНТР» аттестовано на соответствие требованиям нормативной документации, свидетельство о метрологической аттестации № АПО-001-12 от 31 мая 2012 г., выданное ФГУП «ВНИИМС».

Уровень защиты ПО «АльфаЦЕНТР» соответствует уровню «С» в соответствии с разд. 2.6 МИ 3286-2010.

Идентификационные данные ΠO «АльфаЦЕНТР» приведены в табл. 2. Таблица 2

Наименование программного обеспечения	Идентификационное наименование программного обеспечения	Номер версии программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
ПО «АльфаЦЕНТР»	отсутствует	12.01	3E736B7F380863F44 CC8E6F7BD211C54	MD5

Метрологические и технические характеристики

4
0,4
±20
800
от 1 до 120
0,5-1
от 0 до 35
±5
80000

Пределы допускаемых относительных погрешностей ИК (измерения активной и реактивной электрической энергии и мощности), %, для рабочих условий эксплуатации АИИС КУЭ ЗАО «Доринда», Торговый комплекс приведены в табл. 3.

Таблица 3

Но- мер ИК	Значе- ние соѕф	1 % $I_{\text{hom}} \leq I < 5$ % I_{hom}	$5 \% I_{\text{HOM}} \le I < 20 \% I_{\text{HOM}}$	$20\%\ I_{\text{hom}} \le I < 100\%\ I_{\text{hom}}$	$100 \% I_{\text{HOM}} \le I \le 120 \% I_{\text{HOM}}$
Активная энергия					
1 – 4	1,0	±2,4	±1,7	±1,5	±1,5
1 – 4	0,8	±3,3	±2,3	±1,8	±1,8
1 – 4	0,5	±5,6	±3,3	±2,5	±2,5
Реактивная энергия					
1 – 4	0,8	±5,6	±4,3	±3,8	±3,8
1 – 4	0,5	±4,2	±3,5	±3,3	±3,3

Надежность применяемых в системе компонентов:

- счётчик среднее время наработки на отказ, не менее T=80000 ч (ЕвроАльфа), средний срок службы 30 лет;
- трансформаторы тока типа ТШП-0,66 среднее время наработки на отказ, не менее T=219000 ч, средний срок службы 25 лет.

Надежность системных решений:

- § резервирование питания компонентов АИИС КУЭ с помощью устройства АВР;
- **§** резервирование каналов связи: для передачи информации внешним организациям организованы два независимых канала связи;
 - **§** регистрация в журналах событий компонентов системы времени и даты:
 - счетчиками электрической энергии:
 - о попыток несанкционированного доступа;
 - о связи со счетчиком, приведших к каким-либо изменениям данных;
 - о коррекции текущих значений времени и даты;
 - о отсутствие напряжения при наличии тока в измерительных цепях;
 - о перерывов питания;
 - о самодиагностики (с записью результатов).

Защищённость применяемых компонентов:

- **§** механическая защита от несанкционированного доступа и пломбирование:
- счетчиков электрической энергии;
- клемм вторичных обмоток трансформаторов тока;
- промежуточных клеммников вторичных цепей тока и напряжения;
- испытательных клеммных коробок.

Защита информации на программном уровне:

- установка паролей на счетчиках электрической энергии;
- установка пароля на сервер ЦСОИ;
- возможность использования цифровой подписи при передаче данных.

Глубина хранения информации:

- счетчик электрической энергии 30-минутный профиль нагрузки в двух направлениях не менее 35 суток, сохранность данных в памяти при отключении питания 30 лет;
- сервер ЦСОИ хранение результатов измерений и информации о состоянии средств измерений за весь срок эксплуатации системы.

Знак утверждения типа

наносится типографским способом на титульный лист эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электрической энергии и мощности ЗАО «Доринда», Торговый комплекс.

Комплектность средства измерений

1. Трансформатор тока ТШП-0,66	12 шт.
2. Счетчик электрической энергии EA05RAL-B-4	4 шт.
3. Сотовый модем Siemens IRZ MC52i	1 шт.
4. Moдем Zyxel OMNI 56K	1 шт.
5. Преобразователь интерфейсов МОХА ТСС-100	2 шт.
6. Сервер БД ЦСОД ПЭВМ (IBM совместимый)	1 шт.
7. Программное обеспечение «АльфаЦЕНТР»	1 шт.
8. Методика измерений 4222-005-30582525 МИ	1 экз.
9. Паспорт 4222-005-30582525 ПС	1 экз.

Поверка

осуществляется в соответствии с документом МИ 3000-2006 «ГСИ. Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки».

Перечень эталонов, применяемых при поверке:

– средства поверки и вспомогательные устройства, в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты АИИС КУЭ, а также приведенные в табл. 2 МИ 3000-2006.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе 4222-005-30582525 МИ «Методика измерений электрической энергии и мощности при помощи системы автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности ЗАО «Доринда», Торговый комплекс. Свидетельство об аттестации МИ 01.00292.432.00289-2013 от 03.09.2013 г.

Нормативные и технические документы, устанавливающие требования к АИИС КУЭ ЗАО «Доринда», Торговый комплекс

- 1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 2. ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».
- 3. МИ 3000-2006 «ГСИ. Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «Алаксис» (ООО «Алаксис»).

Адрес: 192283, г. Санкт-Петербург, Загребский б-р, д. 33.

Тел./факс (812) 645-17-72. E-mail: info@alaxis.ru

Испытательный центр

ГЦИ СИ ФБУ «Тест-С.-Петербург» зарегистрирован в Государственном реестре под № 30022-10.

190103, г. Санкт-Петербург, ул. Курляндская, д. 1. Тел.: (812) 244-62-28, 244-12-75, факс: (812) 244-10-04.

E-mail: <u>letter@rustest.spb.ru</u>

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

М.П. «___»_____2013 г.

Ф.В. Булыгин