ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакции, утвержденной приказом Росстандарта № 1636 от 02.08.2018 г.)

Весы неавтоматического действия платформенные ВСП

Назначение средства измерений

Весы неавтоматического действия платформенные ВСП (далее - весы) предназначены для определения массы различных грузов.

Описание средства измерений

Принцип действия весов основан на преобразовании деформации упругого элемента датчика, возникающей под действием силы тяжести взвешиваемого груза, в аналоговый электрический сигнал, пропорциональный массе груза. Далее сигнал преобразуется в цифровой код с последующей обработкой в микропроцессоре. Измеренное значение массы выводится на дисплей.

Конструктивно весы состоят из следующих функциональных узлов:

- грузоприемная платформа: механическая конструкция, предназначенная для принятия нагрузки и опирающаяся на один весоизмерительный тензорезисторный датчик (далее датчик);
- электронное устройство, содержащее аналогово-цифровой преобразователь сигнала датчика, микропроцессор (устройство обработки цифровых данных), определяющее измеренное значение массы и стоимости товара (при наличии данной функции), на основе заранее введенной оператором цены за единицу товара;
 - показывающее устройство;
 - клавиатура оператора.

В зависимости от модификации функциональные узлы выполнены либо в отдельных корпусах, либо объединены в одном корпусе с другими узлами.

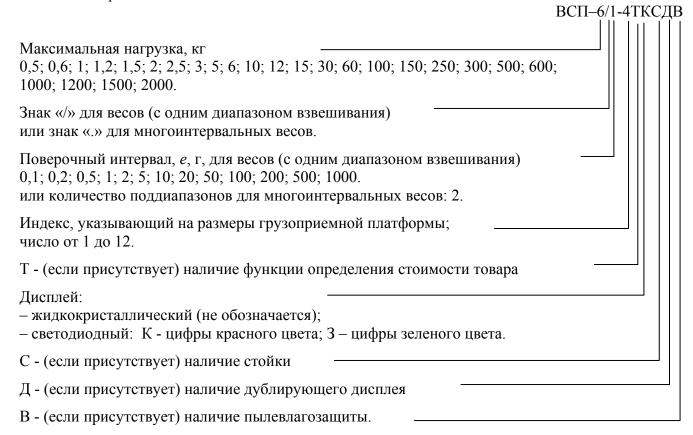
Весы снабжены следующими устройствами и функциями (в скобках указаны соответствующие пункты ГОСТ OIML R 76-1-2011):

- устройство первоначальной установки на нуль (Т.2.7.2.4);
- устройство автоматической установки на нуль (Т.2.7.2.3);
- полуавтоматическое устройство установки на нуль (Т.2.7.2.2);
- устройство слежения за нулем (Т.2.7.3);
- устройство уравновешивания тары устройство выборки массы тары (Т.2.7.4.1);
- устройство установки по уровню (Т.2.7.1);
- вычисление стоимости на основе заранее введенной оператором цены за единицу товара (T.1.2.8).

Класс точности, значение максимальной нагрузки Мах (Мах $_{i}$ поддиапазонов взвешивания многоинтервальных весов), значение минимальной нагрузки Мin, поверочный интервал e (e_{i} поддиапазонов взвешивания многоинтервальных весов) наносятся на маркировочную табличку и лицевую панель весов.

Общий вид весов представлен на рисунках 1 и 2.

1 ВСП-1



ВСП-2

Рисунок 1 - Общий вид весов

Модификации весов имеют обозначение вида:

Для защиты от несанкционированного доступа к внутренним частям весов и изменений параметров их настройки и юстировки используется комбинация клавиш в ВСП-1, ВСП-2, ВСП-3, ВСП-4; в весах ВСП-5, ВСП-8, ВСП-10, ВСП-12 применяется пломбировка крепежного элемента корпуса показывающего устройства либо пломбировка переключателя настройки (рисунки 3 и 4).

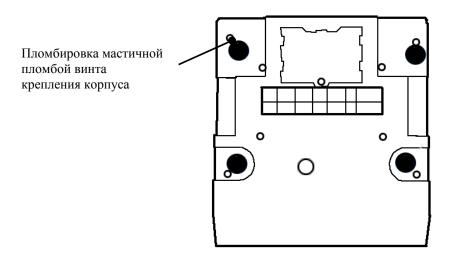


Рисунок 3 - Схема пломбировки весов ВСП-1, ВСП-2, ВСП-3, ВСП-4 от несанкционированного доступа

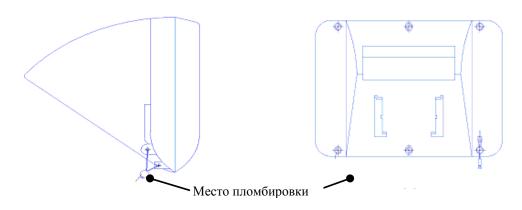


Рисунок 4 - Схема пломбировки весов ВСП-5, ВСП-8, ВСП-10, ВСП-12 от несанкционированного доступа

Программное обеспечение

Программное обеспечение (ПО) весов является встроенным, используется в стационарной (закрепленной) аппаратной части с определенными программными средствами.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается невозможностью изменения ПО без применения специализированного оборудования производителя.

Изменение ПО весов через интерфейс пользователя невозможно. Кроме того, доступ к параметрам юстировки и настройки возможен только при нарушении пломбы и, в зависимости от исполнения весов, изменения положения переключателя настройки или перемычки на печатной плате.

Защита ПО от преднамеренных и непреднамеренных воздействий соответствует уровню «высокий» по Р 50.2.077-2014.

Идентификационные данные ПО приведены в таблицах 1-2. Идентификационные данные ПО отображаются на дисплее индикатора при включении весов.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение						
Модификация весов	ВСП-1	ВСП-2	ВСП-2В	ВСП-3	ВСП-3Т	ВСП-4	ВСП-4Т
Идентификационное наименование ПО	-	1	-	1	-	1	1
Номер версии (идентификационный номер) ПО	HB 1.00	HB 2.00	HB 2B.00	HB 3.00	HB 3P.00	HB 4.00	HB 4P.00
Цифровой идентификатор ПО	-	-	-	-	-	-	-

Примечание - Идентификационное наименование программного обеспечения и цифровой идентификатор ПО (контрольная сумма исполняемого кода) не используется на устройствах при работе со встроенным ПО.

Таблица 2 - Идентификационные данные ПО

Идентификацион-						
ные данные	Значение					
(признаки)						
Модификация	ВСП-5	ВСП-5Т	ВСП-8	ВСП-10	ВСП-12	
весов	BCII-3	BCII-31	DC11-0	DCII-10	BCII-12	
Идентификацион-						
ное наименование	-	-	-	-	-	
ПО						
Номер версии	VEr 10.9, 1.11;		VEr 10.9, 1.11;	VEr 10.9, 1.11;	VEr 10.9, 1.11;	
(идентификацион-	VEr YHt 3, 3.11;	VEr 7P.11	VEr YHt 3, 3.11;	VEr YHt 3, 3.11;	VEr YHt 3, 3.11;	
ный номер) ПО	VEr 7.11;	V L1 /1.11	VEr 7.11;	VEr 7.11;	VEr 7.11;	
2,	VEr 2.03; 9.11		VEr 2.03; 9.11	VEr 2.03; 9.11	VEr 2.03; 9.11	
Цифровой						
идентификатор	-	-	-	-	-	
ПО						

Примечание - Идентификационное наименование программного обеспечения и цифровой идентификатор ΠO (контрольная сумма исполняемого кода) не используется на устройствах при работе со встроенным ΠO .

Метрологические и технические характеристики

Таблица 3

Метрологическая характеристика	Значение
Класс точности по ГОСТ OIML R 76-1-2011	III (средний)
Диапазон уравновешивания тары	100 % Max
Диапазон температуры, °С	от -10 до +40
Число поверочных интервалов, <i>п</i> однодиапазонных весов, не более	6000
Число поверочных интервалов, n_1/n_2 многоинтервальных весов, не более	3000/3000
Параметры электропитания от сети переменного тока:	
напряжение, В	от 187 до 242
частота, Гц	50±1
Номинальное напряжение питания внутреннего источника постоянного тока, В	6

Значения максимальных нагрузок Max, поверочных интервалов e весов указаны в таблицах 4 и 5.

Таблица 4 - Весы (с одним диапазоном взвешивания)

	Максимальная нагрузка,	Поверочный интервал e ,	
Модификация	Мах, кг	действительная цена деления	
		(шкалы) d , $e = d$, г	
ВСП-1	0,5; 0,6; 1; 1,2; 1,5; 2; 2,5; 3; 5	0,1; 0,2; 0,5; 1	
ВСП-2	1; 2; 2,5; 3; 5; 6; 10	0,2; 0,5; 1; 2	
ВСП-2В, ВСП-3, ВСП-3Т	3; 6; 15; 30	0,5; 1; 2; 5; 10	
ВСП-4, ВСП-4Т	3; 6; 15; 30; 60; 100	0,5; 1; 2; 5; 10; 20	
ВСП-5, ВСП-5Т	50; 60; 150; 250; 300	10; 20; 50; 100	
ВСП-8	150; 250; 300; 500; 600; 1000	50; 100; 200	
ВСП-10	300; 500; 600; 1000; 1200;	50; 100; 200; 500	
BC11-10	1500; 2000		
ВСП-12	1000; 1200; 1500; 2000	200; 500	
ВСП-1	0,5; 0,6; 1; 1,2; 1,5; 2; 2,5; 3; 5	0,1; 0,2; 0,5; 1	

Таблица 5 - Многоинтервальные весы

	Максимальная нагрузка,	Поверочный интервал, e_1/e_2 ,
Модификация	Max ₁ / Max ₂ , кг	действительная цена деления
		(шкалы), d_1/d_2 (e_i = d_i), г
ВСП-1,5.2	0,6/1,5	0,2/0,5
ВСП-3.2	1,5/3	0,5/1
ВСП-6.2	3/6	1/2
ВСП-15.2	6/15	2/5
ВСП-30.2	15/30	5/10
ВСП-60.2	30/60	10/20
ВСП-150.2	60/150	20/50
ВСП-300.2	150/300	50/100

Знак утверждения типа

наносится на маркировочную табличку, расположенную на корпусе весов и типографским способом на титульный лист руководства по эксплуатации.

Комплектность средства измерений

Таблица 6 - Комплектность средства измерений

Наименование	Количество
Весы	1 шт.
Руководство по эксплуатации	1 экз.
Паспорт	1 экз.

Поверка

осуществляется по приложению ДА «Методика поверки весов» ГОСТ OIML R 76-1-2011, «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

Идентификационные данные, а также процедура идентификации программного обеспечения приведены в разделе «Поверка весов» руководства по эксплуатации.

Основные средства поверки: гири, соответствующие классу точности M_1 по ГОСТ OIML R 111-1-2009.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки в виде наклейки наносится на лицевую панель весов и (или) оттиск поверительного клейма наносится на крепежные винты нижней части корпуса весов ВСП-1, ВСП-2, ВСП-3, ВСП-4 или на крепежные винты задней стенки корпуса показывающего устройства весов ВСП-5, ВСП-8, ВСП-10, ВСП-12.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к весам неавтоматического действия платформенным ВСП

ГОСТ OIML R 76-1-2011 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 8.021-2015 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений массы

ТУ 4274-002-50062845-2013 Весы неавтоматического действия платформенные ВСП. Технические условия

Изготовитель

Акционерное общество «ВЕС-СЕРВИС» (АО «ВЕС-СЕРВИС»)

ИНН 7814099626

Адрес: 197349, г. Санкт-Петербург, Макулатурный пр., 4

Юридический адрес: 197374, г. Санкт-Петербург, ул. Оптиков, д.4 литер. А, пом.11-Н

Тел.: (812) 426-1634; (800)775-8402 Web-сайт: www.vesservice.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, 46 Тел./факс: (495) 437-55-77 / (495) 437-56-66

Web-сайт: www.vniims.ru E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. «___»_____2018 г.