ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции "Должниково" Куйбышевской ЖД - филиала ОАО "Российские Железные Дороги" в границах Ульяновской области

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции "Должниково" Куйбышевской ЖД – филиала ОАО "Российские Железные Дороги" в границах Ульяновской области (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-ый уровень — включает в себя измерительные трансформаторы тока (далее — ТТ) класса точности 0,2S по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее — ТН) класса точности 0,2 по ГОСТ 1983-2001, счетчики активной и реактивной электроэнергии типа Альфа A1800 класса точности 0,2S (в части активной электроэнергии по ГОСТ Р 52323-2005) и типа Альфа A1800 класса точности 0,5 (в части реактивной электроэнергии по ГОСТ Р 52425-2005), вторичные измерительные цепи и технические средства приема-передачи данных;

2-ой уровень — измерительно-вычислительный комплекс регионального Центра энергоучёта, реализован на базе устройства сбора и передачи данных (УСПД RTU-327, Госреестр № 19495-03, зав. № 001130), выполняющего функции сбора, хранения результатов измерений и передачи их на уровень ИВК, и содержит программное обеспечение (далее — ПО) "Альфа-Центр", с помощью которого решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов;

3-ий уровень — измерительно-вычислительный комплекс Центра сбора данных АИИС КУЭ (далее — ИВК), реализованный на базе серверного оборудования (серверов сбора данных — основного и резервного, сервера управления), ПО "ЭНЕРГИЯ-АЛЬФА", включающий в себя каналы сбора данных с уровня регионального Центра энергоучёта, каналы передачи данных субъектам ОРЭ.

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности с учетом коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД уровня ИВК регионального Центра энергоучета, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИИС КУЭ.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации времени в системе в состав ИВК входит устройство синхронизации системного времени (УССВ) типа 35LVS (35HVS). Устройство синхронизации системного времени УССВ обеспечивает автоматическую синхронизацию часов сервера, при превышении порога \pm 1с происходит коррекция часов сервера. Часы УСПД синхронизируются при каждом сеансе связи УСПД - сервер, коррекция проводится при расхождении часов УСПД и сервера на значение, превышающее \pm 1с. Часы счетчика синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на \pm 1 с. Взаимодействие между уровнями АИИС КУЭ осуществляется по протоколу NTP по оптоволоконной связи, задержками в линиях связи пренебрегаем ввиду малости значений. Поправка часов счетчика \pm 0,5 с, с учетом температурной составляющей – \pm 1,5 с. Погрешность часов компонентов АИИС КУЭ не превышает \pm 5 с.

Программное обеспечение

Уровень регионального Центра энергоучета содержит ПО "Альфа-Центр", включающее в себя модули " Альфа-Центр АРМ", " Альфа-Центр СУБД "Oracle", " Альфа-Центр Коммуникатор". С помощью ПО "Альфа-Центр" решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов.

Уровень ИВК Центра сбора данных содержит ПО "ЭНЕРГИЯ-АЛЬФА", включающее в себя модуль "Энергия Альфа 2". С помощью ПО "ЭНЕРГИЯ-АЛЬФА" решаются задачи автоматического накопления, обработки, хранения и отображения измерительной информации.

Наименование ПО	Идентификационное наименование ПО	Номер версии (идентификацион ный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм цифрового идентификат ора ПО
" Альфа- Центр"	" Альфа-Центр АРМ"	4	a65bae8d7150931f 811cfbc6e4c7189d	MD5
" Альфа- Центр"	" Альфа-Центр СУБД "Oracle"	9	bb640e93f359bab1 5a02979e24d5ed48	MD5
" Альфа- Центр"	" Альфа-Центр Коммуникатор"	3	3ef7fb23cf160f566 021bf19264ca8d6	MD5
"ЭНЕРГИЯ- АЛЬФА"	ПК "Энергия Альфа 2"	2.0.0.2	17e63d59939159ef 304b8ff63121df60	MD5

Таблица 1 - Сведения о программном обеспечении.

- Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3, 4 нормированы с учетом ПО;
- Уровень защиты ПО от непреднамеренных и преднамеренных изменений уровень «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Состав 1-го и 2-го уровней АИИС КУЭ приведен в таблице 2.

Таблица 2 - Состав 1-го и 2-го уровней АИИС КУЭ

		Состав 1-го и 2-го уровней				
№ ИК	Диспетчерское наименование точки учёта	Трансформатор тока	Трансформатор напряжения	Счётчик статический трёхфазный переменного тока активной/реактивной энергии	УСПД	Вид электроэнергии
	I		ТП "Должниково	1		
1	Ввод 1 110 кВ Должниково- Редуктор точка измерения № 19	ТГФМ-110 II* класс точности 0,2S Ктт=600/1 Зав. № 7961; 7964; 7966 Госреестр № 36672-08	НАМИ-110 УХЛ1 класс точности 0,2 Ктн=110000/√3/100/√3 Зав. № 7741; 7665; 7667 Госреестр № 24218-08	A1802RALQ-P4GB-DW-4 класс точности 0,2S/0,5 Зав. № 01241335 Госреестр № 31857-11		активная реактивная
2	Ввод 2 110 кВ Должниково-Инза точка измерения № 20	ТГФМ-110 II* класс точности 0,2S Ктт=600/1 Зав. № 7956; 7955; 7939 Госреестр № 36672-08	НАМИ-110 УХЛ1 класс точности 0,2 Ктн=110000/√3/100/√3 Зав. № 7745; 7658; 7659 Госреестр № 24218-08	А1802RALQ-P4GB-DW-4 класс точности 0,2S/0,5 Зав. № 01241341 Госреестр № 31857-11	RTU-327 зав. № 001130	активная реактивная
3	СТ-1 110 кВ точка измерения № 21	ТГФМ-110 II* класс точности 0,2S Ктт=75/1 Зав. № 7782; 7781; 7780 Госреестр № 36672-08	НАМИ-110 УХЛ1 класс точности 0,2 Ктн=110000/√3/100/√3 Зав. № 7741; 7665; 7667 Госреестр № 24218-08	A1802RALQ-P4GB-DW-4 класс точности 0,2S/0,5 Зав. № 01241338 Госреестр № 31857-11	Госреестр № 19495 - 03	активная реактивная
4	СТ-2 110 кВ точка измерения № 22	ТГФМ-110 II* класс точности 0,2S Ктт=100/1 Зав. № 7788; 7855; 7854 Госреестр № 36672-08	НАМИ-110 УХЛ1 класс точности 0,2 Ктн=110000/√3/100/√3 Зав. № 7745; 7658; 7659 Госреестр № 24218-08	А1802RALQ-P4GB-DW-4 класс точности 0,2S/0,5 Зав. № 01241346 Госреестр № 31857-11		активная реактивная

Таблица 3 - Метрологические характеристики ИК (активная энергия)

		Пределы допускаемой относительной погрешности ИК					
Номер ИК	Диапазон значений силы тока	Основная относительная погрешность ИК, $(\pm d)$, %			Относительная погрешность ИК в рабочих условиях эксплуатации, $(\pm d)$, %		
		$\cos \varphi = 1.0$	$\cos \varphi = 0.87$	$\cos \varphi = 0.8$	$\cos \varphi = 1.0$	$\cos \varphi = 0.87$	$\cos \varphi = 0.8$
1 - 4	$0.01(0.02)I_{H_1} \le I_1 < 0.05I_{H_1}$		1,1	1,1	1,2	1,2	1,3
(TT 0,2S; TH 0,2; Сч 0,2S)	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	0,6	0,7	0,8	0,8	0,9	1,0
	$0.2I_{H_1} \le I_1 < I_{H_1}$	0,5	0,6	0,6	0,8	0,8	0,9
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	0,5	0,6	0,6	0,8	0,8	0,9

Таблица 4 - Метрологические характеристики ИК (реактивная энергия)

Габлица 4 - Метрологические характеристики ИК (реактивная энергия)						
	Диапазон	Пределы допускаемой относительной погрешности ИК				
Номер ИК	значений силы тока	Основная от погрешностн	носительная ь ИК, (± <i>d</i>), %	Относительная погрешность ИК в рабочих условиях эксплуатации, $(\pm d)$, %		
		$\cos \varphi = 0.87(\sin \varphi = 0.5)$	$\cos \varphi = 0.8$ $(\sin \varphi = 0.6)$	$\cos \varphi = 0.87(\sin \varphi = 0.5)$	$\cos \varphi = 0.8$ $(\sin \varphi = 0.6)$	
1 - 4	$0.02I_{H_1} \le I_1 < 0.05I_{H_1}$	2,1	1,8	2,5	2,3	
(TT 0,2S; TH 0,2; Сч 0,5)	$0.05I_{\rm H_1} \le I_1 < 0.2I_{\rm H_1}$	1,6	1,4	2,1	1,9	
	$0.2I_{H_1} \le I_1 < I_{H_1}$	1,1	1,0	1,8	1,7	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	1,1	1,0	1,8	1,7	

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
- 2. Нормальные условия эксплуатации:

Параметры сети:

- диапазон напряжения (0,99 1,01) Uн;
- диапазон силы тока (0,01 1,2)Ін;
- диапазон коэффициента мощности $\cos \phi$ ($\sin \phi$) 0,5 1,0 (0,87 0,5);
- температура окружающего воздуха: ТТ и ТН от минус 40 до плюс 50 °C; счетчиков -от плюс 18 до плюс 25 °C; ИВКЭ от плюс 10 до плюс 30 °C; ИВК от плюс 10 до плюс 30 °C;
- частота (50 ± 0.15) Гц;
- магнитная индукция внешнего происхождения, не более 0,05 мТл.

3. Рабочие условия эксплуатации:

Для TT и TH:

- параметры сети: диапазон первичного напряжения (0.9 1.1)Uн₁; диапазон силы первичного тока (0.01 1.2)Iн₁; коэффициент мощности $\cos\phi(\sin\phi)$ 0.8 1.0 (0.6 0.5); частота (50 ± 0.4) Γ ц;
- температура окружающего воздуха от минус 30 до плюс 35 °C.

Для счетчиков электроэнергии Альфа А1800:

- параметры сети: диапазон вторичного напряжения (0.9 1.1)Uн₂; диапазон силы вторичного тока (0.01 1.2)Iн₂; коэффициент мощности $\cos\phi(\sin\phi)$ 0.8 1.0 (0.6 0.5); частота (50 ± 0.4) Γ ц;
- температура окружающего воздуха от плюс 10 до плюс 30 °C;
- магнитная индукция внешнего происхождения, не более 0,5 мТл.
- 4. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- счетчик среднее время наработки на отказ не менее 120000 часов, среднее время восстановления работоспособности 48 часов;
- УСПД среднее время наработки на отказ не менее 40000 часов, среднее время восстановления работоспособности 1 час.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства АВР;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
- в журналах событий счетчика и УСПД фиксируются факты:
 - **ü** параметрирования;
 - **ü** пропадания напряжения;
 - **ü** коррекция времени.

Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - ü счетчика;
 - **ü** промежуточных клеммников вторичных цепей напряжения;
 - **ü** испытательной коробки;
 - ü УСПД.
- наличие защиты на программном уровне:
 - ü пароль на счетчике;
 - **ü** пароль на УСПД;
 - **ü** пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована).

Глубина хранения информации:

• электросчетчик – тридцатиминутный профиль нагрузки в двух направлениях при отключении питания – до 5 лет;

• ИВК – суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу - не менее 35 суток; при отключении питания – не менее 3 лет.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) тяговой подстанции "Должниково" Куйбышевской ЖД – филиала ОАО "Российские Железные Дороги" в границах Ульяновской области типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Кол-во, шт.
Трансформаторы тока ТГФМ-110 II*	12
Трансформаторы напряжения НАМИ-110 УХЛ1	6
Комплексы аппаратно-программных средств для учета электроэнергии на основе УСПД типа RTU-327	1
Счётчики электрической энергии трёхфазные многофункциональные Альфа A1800	4
Устройство синхронизации системного времени на базе GPS- приемника	1
Сервер управления HP ML 360 G5	1
Сервер основной БД HP ML 570 G4	1
Сервер резервный БД HP ML 570 G4	1
Методика поверки	1
Формуляр	1
Инструкция по эксплуатации	1

Поверка

осуществляется по документу МП 54597-13 "Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции "Должниково" Куйбышевской ЖД - филиала ОАО "Российские Железные Дороги" в границах Ульяновской области. Методика поверки", утвержденному ГЦИ СИ ФГУП "ВНИИМС" 15.05.2013 г.

Перечень основных средств поверки:

- Трансформаторов тока в соответствии с ГОСТ 8.217-2003 "ГСИ. Трансформаторы тока. Методика поверки";
- Трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 "ГСИ. Трансформаторы напряжения. Методика поверки" и/или МИ 2925-2005 "Измерительные трансформаторы напряжения $35...330/\sqrt{3}$ кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя";
- Средства измерений МИ 3195-2009 «Государственная система обеспечения единства измерений мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений».

- Средства измерений МИ 3196-2009 «Государственная система обеспечения единства измерений вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчиков Альфа А1800 по документу "Счётчики электрической энергии трёхфазные многофункциональные Альфа А1800. Методика поверки ДЯИМ.411152.018 МП" утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2011 г.;
- для УСПД RTU-300 по документу "Комплексы аппаратно-программных средств для учета электроэнергии на основе УСПД серии RTU-300. Методика поверки"; утвержденному ГЦИ СИ ФГУП "ВНИИМС" в 2003 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе АУВП.411711.510.ЭД.ИЭ "Инструкция по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии тяговых подстанций в границах ОАО "Ульяновскэнерго" Куйбышевской железной дороги".

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции "Должниково" Куйбышевской ЖД – филиала ОАО "Российские Железные Дороги" в границах Ульяновской области

- 1. ГОСТ 22261-94 "Средства измерений электрических и магнитных величин. Общие технические условия".
- 2. ГОСТ 34.601-90 "Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания".
- 3. ГОСТ Р 8.596-2002 "ГСИ. Метрологическое обеспечение измерительных систем. Основные положения".
- 4. ГОСТ 7746–2001 "Трансформаторы тока. Общие технические условия".
- 5. ГОСТ 1983–2001 "Трансформаторы напряжения. Общие технические условия".
- 6. ГОСТ Р 52323-2005 (МЭК 62053-22:2003) "Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0.2S и 0.5S".
- 7. ГОСТ Р 52425-2005 (МЭК 62053-23:2003) "Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии".
- 8. ТУ 4228-011-29056091-11 "Счетчики электрической энергии трехфазные многофункциональные Альфа А1800. Технические условия".
- 9. АУВП.411711.510.ЭД.ИЭ "Инструкция по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии тяговых подстанций в границах ОАО "Ульяновскэнерго" Куйбышевской железной дороги".

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

Открытое акционерное общество "Российские Железные Дороги"

(ОАО "РЖД")

Адрес: 107174, г. Москва, Новая Басманная ул., д.2

Тел.: (499) 262-60-55 Факс: (499) 262-60-55 e-mail: <u>info@rzd.ru</u> http://www.rzd.ru/

Заявитель

Общество с ограниченной ответственностью "Инженерный центр

"ЭНЕРГОАУДИТКОНТРОЛЬ" (ООО «ИЦ ЭАК»)

Юридический адрес: 123007, г. Москва, ул. 1-ая Магистральная, д. 17/1, стр. 4

Тел. (495) 620-08-38 Факс (495) 620-08-48

Испытательный центр

Государственный центр испытаний средств измерений ФГУП «ВНИИМС» (ГЦИ СИ ФГУП «ВНИИМС»)

Юридический адрес:

119361, г. Москва

ул. Озерная, д. 46

тел./факс: 8(495)437-55-77

Регистрационный номер аттестата аккредитации государственного центра испытаний средств измерений № 30004-08 от 27.06.2008 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			Ф.В. Булыгин
М.п.	"	"	2013 г.