ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы цепей скалярные Р2М-18А

Назначение средства измерений

Анализаторы цепей скалярные P2M-18A предназначены для измерений модуля коэффициента передачи, модуля коэффициента отражения, коэффициента стоячей волны по напряжению (далее - КСВН), мощности в коаксиальном волноводе с диаметрами поперечных сечений 7,0/3,04 мм и 3,5/1,52 мм, и для генерирования электрических синусоидальных колебаний.

Описание средства измерений

Принцип действия анализаторов цепей скалярных P2M-18A основан на выделении высокочастотных электромагнитных волн (падающей, прошедшей через исследуемое устройство и отраженной от его входов), преобразовании их в низкочастотные напряжения, пропорциональные мощности этих волн, измерении напряжений и расчете модуля коэффициента отражения, КСВН, модуля коэффициента передачи. Выделение и преобразование производится с помощью головок детекторных и датчиков коэффициента стоячей волны (далее - КСВ).

Анализаторы цепей скалярные P2M-18A состоят из блока генераторно-измерительного, головок детекторных, датчиков КСВ, нагрузок комбинированных и кабелей сверхвысоких частот (далее - СВЧ).

Анализаторы цепей скалярные P2M-18A имеют 8 модификаций. Модификации характеризуются опциями, представленными в таблице 1, и отличаются типами соединителя выхода СВЧ блока генераторно-измерительного и возможностью расширения диапазонов установки уровня выходной мощности и измерений модуля коэффициента передачи:

- «P2M-18A-01Р» (далее «01Р») тип III, розетка по ГОСТ РВ 51914-2002;
- «P2M-18A-11Р» (далее «11Р») тип N, розетка по ГОСТ РВ 51914-2002;
- «P2M-18A-03P» (далее «03P») тип IX вариант 3, розетка по ГОСТ РВ 51914-2002;
- «Р2М-18А-11Р» (далее «13Р») тип 3,5 мм, розетка по ГОСТ РВ 51914-2002;
- «P2M-18A-ATA/70» (далее «ATA/70») наличие ступенчатого аттенюатора на выходе блока генераторно-измерительного.

Таблица 1

Наименование модификаций	Опции
Анализатор цепей скалярный Р2М-18А/1	Опция «01Р»
Анализатор цепей скалярный Р2М-18А/2	Опция «11Р»
Анализатор цепей скалярный Р2М-18А/3	Опция «03Р»
Анализатор цепей скалярный Р2М-18А/4	Опция «13Р»
Анализатор цепей скалярный Р2М-18А/5	Опции «01Р», «АТА/70»
Анализатор цепей скалярный Р2М-18А/6	Опции «11Р», «АТА/70»
Анализатор цепей скалярный Р2М-18А/7	Опции «03Р», «АТА/70»
Анализатор цепей скалярный Р2М-18А/8	Опции «13Р», «АТА/70»

Внешний вид анализаторов цепей скалярных Р2М-18А представлен на рисунках 1 и 2, место пломбировки от несанкционированного доступа - на рисунке 3.

Рисунок 1 - Внешний вид анализаторов цепей скалярных P2M-18A/3, P2M-18A/4, P2M-18A/7, P2M-18A/8

Рисунок 2 - Внешний вид анализаторов цепей скалярных P2M-18A/1, P2M-18A/2, P2M-18A/5, P2M-18A/6

Рисунок 3 - Место на задней панели для пломбирования от несанкционированного доступа

Программное обеспечение

Анализаторы цепей скалярные P2M-18A работают под управлением внешнего персонального компьютера с установленным программным обеспечением (далее - ПО), которое обрабатывает измерительную информацию, выполняет вычисления и обеспечивает отображение результатов измерений. Информационный обмен между анализатором цепей скалярным P2M-18A и персональным компьютером осуществляется по интерфейсу Ethernet.

ПО реализовано без выделения метрологически значимой части.

Метрологические характеристики анализаторов цепей скалярных P2M-18A нормированы с учетом влияния ПО.

Идентификационные данные ПО приведены в таблице 2.

Таблица 2 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Graphit P2M
Номер версии (идентификационный номер) ПО	2.3
Цифровой идентификатор ПО	Для файла «launcher.exe»:
	b5ff8fa0d9f7b56fae15003b8597b891
Алгоритм вычисления цифрового идентификатора ПО	md5

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по классификации МИ 3286-2010.

Для работы программного обеспечения необходимо, чтобы персональный компьютер удовлетворял следующим минимальным требованиям:

- процессор Intel[®] Pentium II[®] 600 МГц (или аналог);
- наличие адаптера локальной сети Ethernet;
- оперативная память 512 Мб;
- разрешение экрана 1024 × 768.

Программное обеспечение работает в следующих операционных системах: Windows[®] XP, Windows[®] Vista, Windows[®] 7. Персональный компьютер не входит в комплект поставки.

Метрологические и технические характеристики

Таблица 3 - Метрологические характеристики

Наименование характеристики	Значение
Диапазон рабочих частот ¹⁾ , МГц	от 10 до 18000
Диапазоны измерений:	
- модуля коэффициента передачи, дБ:	
а) анализаторов без опции «ATA/70»	от -65 до + 35
б) анализаторов с опцией «АТА/70»	от -65 до + 65
- модуля коэффициента отражения	от 0 до 1
- КСВН	от 1,02 до 5,00
- мощности, дБм	от -55 до + 13
Диапазон установки уровня выходной мощности:	
- анализаторов без опции «АТА/70», дБм	от -20 до + 13
- анализаторов с опцией «АТА/70», дБм	от -90 до + 13
Пределы допускаемой относительной погрешности	
установки частоты при работе от внутреннего	$\pm 1 \times 10^{-6}$
опорного генератора в течение одного года	
Дискретность установки частоты, Гц	1
Пределы допускаемой погрешности установки уровня	
выходной мощности в диапазоне мощностей, д \mathbb{S}^{2}	
- от -55 до менее - 20 дБм	±1,5
- от -20 до 13 дБм	±1,0
Пределы допускаемой погрешности измерений	±1
мощности, дБ	±1
Пределы допускаемой абсолютной погрешности	$\pm (0.02 \cdot A/+0.2)$
измерений модуля коэффициента передачи, д \mathbb{E}^{3}	_(0,02 µ1/1 0,2/
Пределы допускаемой абсолютной погрешности	$\pm (0.09 \cdot \Gamma^2 + 0.02)$
измерений модуля коэффициента отражения, д \mathbb{E}^{3}	_(0,0)1 (0,02)
Пределы допускаемой относительной погрешности	$\pm (3 \cdot K_{cmU} + 1)$
измерений КСВН при $K_{cmU} \leq 2,0, \%^{3}$	_(C 110m0 + 1)

Наименование характеристики	Значение
Пределы допускаемой относительной погрешности	$dK_{+}=[(K_{cmU}(\Gamma+D\Gamma)/K_{cmU}(\Gamma))-1]\times 100$
измерений КСВН при $2 < K_{cmU} \le 5$, % ⁴⁾	$dK_{-}=[(K_{cmU}(\Gamma-D\Gamma)/K_{cmU}(\Gamma))-1]\rtimes 00$
КСВН выхода СВЧ, не более	1,7
Период обновления измерений в полном диапазоне	
рабочих частот при количестве точек 501 и усреднении	400
3, мс, не более	

 $^{^{1)}}$ Диапазон установки частот для анализаторов с опциями «03Р» или «13Р» при работе в режиме генератора (синтезатора частот) - от 10 до 20000 МГц.

Погрешность измерений модуля коэффициента передачи нормируется при измерениях согласованных четырехполюсников с КСВН входа и выхода не более 1,3. Для рассогласованных четырехполюсников допускаемая дополнительная абсолютная погрешность измерений DA в дБ рассчитывается по формуле:

 $DA = 20\lambda g[(0.9677 - (1+k^2)0.017) / (1-0.183\lambda T_{ex} - 0.064\lambda T_{ebix} - (1+k^2)\lambda 0.017)],$

где $\Gamma_{\rm ex}$ и $\Gamma_{\rm gas}$ - модули коэффициентов отражения входа и выхода исследуемого четырехполюсника;

- k модуль коэффициента передачи исследуемого четырехполюсника в относительных единицах по напряжению.
- ⁴⁾ dK_+ и dK_- верхний и нижний пределы относительной погрешности измерений КСВН; $K_{cmU}(\Gamma)$ КСВН, равный $(1+\Gamma)/(1-\Gamma)$;
- $\mathsf{D}\Gamma$ абсолютная погрешность измерений модуля коэффициента отражения.

Таблица 4 - Основные технические характеристики

Габлица 4 - Основные технические характеристики	
Наименование характеристики	Значение
Количество измерительных входов	3
Напряжение питания от сети переменного тока частотой (50±1) Гц, В	От 198 до 242
Потребляемая мощность, В.А, не более	100
Время установления рабочего режима, ч, не более	0,5
Время непрерывной работы, ч, не менее	16
Габаритные размеры блока генераторно-измерительного, мм,	
не более:	
- высота	170
- ширина	390
- длина	400
Масса блока генераторно-измерительного, кг, не более	11
Рабочие условия эксплуатации:	
- температура окружающего воздуха, °С	от +15 до +35
- относительная влажность воздуха, при 25 °C, %, не более	80
- атмосферное давление, кПа (мм рт.ст.)	от 70 до 106,7
	(от 537 до 800)
Тип соединителей выхода СВЧ:	
- анализаторов с опцией «01Р»	III, розетка
- анализаторов с опцией «11Р»	N, розетка
- анализаторов с опцией «03Р»	IX вариант 3, розетка
- анализаторов с опцией «13Р»	3,5 мм, розетка

²⁾ Для анализаторов с опцией «ATA/70» пределы допускаемой относительной погрешности установки уровня мощности нормируются в режиме «Максимальное согласование».

 $^{^{5}}$ Γ , A, K_{cmU} - измеренные значения модуля коэффициента отражения, модуля коэффициента передачи и КСВН соответственно.

Наименование характеристики	Значение
Показатели надежности:	
- средний срок службы, лет	5
- средняя наработка на отказ, ч, не менее	10000

Знак утверждения типа

наносится на переднюю панель блока генераторно-измерительного и титульный лист руководства по эксплуатации ЖНКЮ.468166.027 РЭ типографским способом.

Комплектность средства измерений

Таблица 5 - Комплектность анализаторов цепей скалярных Р2М-18А

Наименование, тип	Обозначение	Коли-	Примечание
Блок генераторно-измерительный:			
- ALC-18A/1	ЖНКЮ.468151.025		опция «01Р»
- ALIC-18A/2	ЖНКЮ.468151.025-01		опция «11Р»
- АЦС-18А/3	ЖНКЮ.468151.025-02		опция «03Р»
- АЦС-18А/4	ЖНКЮ.468151.025-03		опция «13Р»
- АЦС-18А/5	ЖНКЮ.468151.026	1	опции «01Р», «АТА/70»
- АЦС-18А/6	ЖНКЮ.468151.026-01	1 шт.	опции «11Р», «АТА/70»
- АЦС-18А/7	ЖНКЮ.468151.026-02		опции «03Р», «ATA/70»
- АЦС-18А/8	ЖНКЮ.468151.026-03		опции «13Р», «АТА/70»
Головка детекторная Д42-18-01	ЖНКЮ.467732.009-01	1 шт.	тип III
Головка детекторная Д42-18-11	ЖНКЮ.467732.009-03	1 шт.	тип N
Головка детекторная Д42-20-03	ЖНКЮ.467732.010-01	1 шт.	тип IX вариант 3
Головка детекторная Д42-20-13	ЖНКЮ.467732.010-03	1 шт.	тип 3,5 мм
Датчик КСВ ДК4-18-01Р-01Р	ЖНКЮ.467739.008	1 шт.	тип III
Датчик КСВ ДК4-18-11Р-11Р	ЖНКЮ.467739.008-01	1 шт.	тип N
Датчик КСВ ДК4-20-03Р-03Р	ЖНКЮ.467739.007	1 шт.	тип IX вариант 3
Датчик KCB ДK4-20-13P-13P	ЖНКЮ.467739.007-01	1 шт.	тип 3,5 мм
Кабель СВЧ КСА18А-01-01-600	ЖНКЮ.685675.007	1 шт.	тип III, 0,6 м
Кабель СВЧ КСА18А-01-01-1000	ЖНКЮ.685675.007-01	1 шт.	тип III, 1,0 м
Кабель СВЧ КСА18А-11-11-600	ЖНКЮ.685675.007-03	1 шт.	тип N, 0,6 м
Кабель СВЧ КСА18А-11-11-1000	ЖНКЮ.685675.007-04	1 шт.	тип N, 1,0 м
Кабель СВЧ КСА20А-03-03-600	ЖНКЮ.685675.011	1 шт.	тип IX вариант 3, 0,6 м
Кабель СВЧ КСА20А-03-03-1000	ЖНКЮ.685675.011-01	1 шт.	тип IX вариант 3, 1,0 м
Кабель СВЧ КСА20А-13-13-600	ЖНКЮ.685675.011-03	1 шт.	тип 3,5 мм, 0,6 м
Кабель СВЧ КСА20А-13-13-1000	ЖНКЮ.685675.011-04	1 шт.	тип 3,5 мм, 1,0 м
Нагрузка комбинированная НКХ1-18-01	ЖНКЮ.468518.008	1 шт.	тип III

Наименование, тип	Обозначение	Коли- чество	Примечание
Нагрузка комбинированная НКХ1-18-11	ЖНКЮ.468518.008-01	1 шт.	тип N
Нагрузка комбинированная НКХ2-20-03	ЖНКЮ.468518.010	1 шт.	тип IX вариант 3
Нагрузка комбинированная НКХ2-20-13	ЖНКЮ.468518.010-01	1 шт.	тип 3,5 мм
Переход коаксиальный ПК2-18-11Р-01	ЖНКЮ.468562.016-02	1 шт.	тип N розетка - тип III вилка
Переход коаксиальный ПК2-18-01Р-11	ЖНКЮ.468562.016-01	1 шт.	тип III розетка - тип N вилка
Переход коаксиальный ПК2-18-01-03Р	ЖНКЮ.468562.013	1 шт.	тип III вилка - тип IX вариант 3 розетка
Переход коаксиальный ПК2-18-01-03Р	ЖНКЮ.468562.013	1 шт.	тип III вилка - тип IX вариант 3 розетка
Переход коаксиальный ПК2-18-01Р-03	ЖНКЮ.468562.014	1 шт.	тип III розетка - тип IX вари- ант 3 вилка
Переход коаксиальный ПК2-18-01-13Р	ЖНКЮ.468562.013-01	1 шт.	тип III вилка - тип 3,5 розетка
Переход коаксиальный ПК2-18-01Р-13	ЖНКЮ.468562.014-01	1 шт.	тип III розетка - тип 3,5 вилка
Переход коаксиальный ПК2-18-11-03Р	ЖНКЮ.468562.013-02	1 шт.	тип N вилка - тип IX вариант 3 розетка
Переход коаксиальный ПК2-18-11Р-03	ЖНКЮ.468562.014-02	1 шт.	тип N розетка - тип IX вариант 3 вилка
Переход коаксиальный ПК2-18-11-13Р	ЖНКЮ.468562.013-03	1 шт.	тип N вилка - тип 3,5 розетка
Переход коаксиальный ПК2-18-11Р-13	ЖНКЮ.468562.014-03	1 шт.	тип N розетка - тип 3,5 вилка
Переход коаксиальный ПК2-20-03Р-13	ЖНКЮ.468562.019-01	1 шт.	тип IX вариант 3 розетка - тип 3,5 вилка
Переход коаксиальный ПК2-20-13Р-03	ЖНКЮ.468562.019-02	1 шт.	тип 3,5 розетка - тип IX вариант 3 вилка
Кабель Ethernet	ЖНКЮ.685611.077	1 шт.	патч-корд Cat.5e или аналог
Кабель питания	ЖНКЮ.685631.067	1 шт.	евростандарт, с заземляющим проводником
Формуляр	ЖНКЮ.468166.027ФО	1 экз.	
Методика поверки	ЖНКЮ.468166.027Д3	1 экз.	
Руководство по эксплуатации	ЖНКЮ.468166.027РЭ	1 экз.	три части
Программный комплекс Р2М	ЖНКЮ.02007-07	1 шт.	поставляется на цифровом носителе

Наименование, тип	Обозначение	Коли- чество	Примечание
Упаковка	ЖНКЮ.468916.005	1 шт.	

Примечания:

- 1 Модификация блока генераторно-измерительного определяется при заказе.
- 2 Количество и типы головок детекторных, датчиков КСВ и кабелей СВЧ определяются при заказе.
- 3 Характеристики головок детекторных и датчиков КСВ записаны на цифровой носитель и входят в комплект поставки.
 - 4 Переходы коаксиальные поставляются по согласованию с потребителем.

Поверка

осуществляется по документу ЖНКЮ.468166.027Д3 «ГСИ. Анализаторы цепей скалярные Р2М-18А. Методика поверки», утвержденному ГЦИ СИ ФБУ «Томский ЦСМ» 10.10.2012 г.

Основные средства поверки:

- частотомер электронно-счетный Ч3-66 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений (ФИФОЕИ) 9273-85), диапазон рабочих частот от 10 до 20000 МГц, пределы допускаемой относительной погрешности по частоте кварцевого генератора за 12 месяцев $\pm 5 \cdot 10^{-7}$;
- ваттметр с блоком измерительным E4418B и преобразователями измерительными E4412A и E4413A (регистрационный номер в ФИФОЕИ 34898-07), диапазон рабочих частот от 10 до 20000 МГц, диапазон измерений мощности от минус 55 до 15 дБм, пределы допускаемой относительной погрешности измерений мощности ± 8 %;
- комплекты для измерений соединителей коаксиальных и КИСК-7 (регистрационный номер в ФИФОЕИ 9864-85), пределы допускаемой абсолютной погрешности измерений ± 0.02 мм;
- набор мер коэффициентов передачи и отражения H/M-18-3,5 мм (регистрационный номер в ФИФОЕИ 35976-07), диапазон рабочих частот от 10 до 18000 МГц, номинальные значения ослаблений аттенюаторов 10, 20 и 30 дБ, пределы допускаемой абсолютной погрешности определения действительных значений $\pm 0,35$ дБ; номинальные значения КСВН мер 1,2 и 2,0, пределы допускаемой относительной погрешности определения действительных значений $\pm 4,0\%$;
- набор мер Н3-7 (регистрационный номер в ФИФОЕИ 12494-90), диапазон рабочих частот от 10 до 18000 МГц, номинальные значения ослаблений аттенюаторов 10, 20 и 30 дБ, пределы допускаемой абсолютной погрешности определения действительных значений ± 0.3 дБ;
- набор мер КСВН и полного сопротивления 1-го разряда ЭК9-140 (регистрационный номер в ФИФОЕИ 36021-07), диапазон рабочих частот от 10 до 4000 МГц, номинальные значения КСВН мер 1,2 и 2,0, пределы допускаемой относительной погрешности определения действительных значений $\pm 2,5$ %;
- набор мер полного и волнового сопротивления 1-го разряда ЭК9-145 (регистрационный номер в ФИФОЕИ 8935-82), диапазон рабочих частот от 4000 до 18000 МГц, номинальные значения КСВН мер 1,2 и 2,0, пределы допускаемой относительной погрешности определения действительных значений ± 2 %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на переднюю панель анализаторов цепей скалярных Р2М-18А согласно рисункам 1 и 2.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к анализаторам цепей скалярным P2M-18A

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 16423-78 Измерители коэффициента стоячей волны по напряжению панорамные. Типы. Технические требования и методы испытаний

ЖНКЮ.468166.027 ТУ. Анализаторы цепей скалярные P2M-18A. Технические условия МИ 1700-87 ГСИ. Государственная поверочная схема для средств измерений полного сопротивления в коаксиальных волноводах поперечного сечения 16/6,95; 16/4,58; 7/3,04 и 3,5/1,52 мм в диапазоне частот 0,02 - 18,00 ГГц

Изготовитель

Акционерное общество «Научно-производственная фирма «Микран»

(АО «НПФ «Микран») ИНН 7017211757

Адрес: Россия, 634041, г. Томск, пр-т Кирова, 51д

Телефон: (3822) 41-34-03, 41-34-06, факс: (3822) 42-36-15

Web-сайт: <u>www.micran.ru</u> E-mail: <u>mic@micran.ru</u>

Испытательный центр

ГЦИ СИ Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Томской области» (ГЦИ СИ ФБУ «Томский ЦСМ»)

Адрес: Россия, 634012, Томская область, г. Томск, ул. Косарева, д.17-а

Телефон: (3822) 55-44-86, факс: (3822) 56-19-61, голосовой портал: (3822) 71-37-17

Web-сайт: tomskcsm.ru

E-mail: tomsk@tcsms.tomsk.ru

Аттестат аккредитации ГЦИ СИ ФБУ «Томский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № 30113-08 от 04.08.2011 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

C.C.]	Голубев
--------	---------

М.п. «____ » _____ 2017 г.